7 research outputs found

    Correction: Shekarkar Azgomi et al. A Rapid and Simple Multiparameter Assay to Quantify Spike-Specific CD4 and CD8 T Cells after SARS-CoV-2 Vaccination: A Preliminary Report

    Get PDF
    In the original publication, there was a mistake in Figure 1A, as published [1]. A FACS plot for IL-2 production was duplicated during the editing of the Figure through mere error, between non-stimulated and stimulated conditions. In detail, we duplicated the sixth plot of the upper row from the third plot of the middle row. The corrected Figure 1 appears below. The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated

    Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts.

    Get PDF
    Many pathogens are transmitted by tick bites, including Anaplasma spp., Ehrlichia spp., Rickettsia spp., Babesia and Theileria sensu stricto species. These pathogens cause infectious diseases both in animals and humans. Different types of immune effector mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen-derived antigens or indirectly by molecules released by host cells binding to these antigens. The components of innate immunity, such as natural killer cells, complement proteins, macrophages, dendritic cells and tumor necrosis factor alpha, cause a rapid and intense protection for the acute phase of infectious diseases. Moreover, the onset of a pro-inflammatory state occurs upon the activation of the inflammasome, a protein scaffold with a key-role in host defense mechanism, regulating the action of caspase-1 and the maturation of interleukin-1β and IL-18 into bioactive molecules. During the infection caused by different microbial agents, very similar profiles of the human innate immune response are observed including secretion of IL-1α, IL-8, and IFN-α, and suppression of superoxide dismutase, IL-1Ra and IL-17A release. Innate immunity is activated immediately after the infection and inflammasome-mediated changes in the pro-inflammatory cytokines at systemic and intracellular levels can be detected as early as on days 2-5 after tick bite. The ongoing research field of "inflammasome biology" focuses on the interactions among molecules and cells of innate immune response that could be responsible for triggering a protective adaptive immunity. The knowledge of the innate immunity mechanisms, as well as the new targets of investigation arising by bioinformatics analysis, could lead to the development of new methods of emergency diagnosis and prevention of tick-borne infections

    Low NETosis Induced in Anaplasma phagocytophilumInfected Cells

    Get PDF
    Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. In this study, bioinformatics analysis was conducted to further characterize A. phagocytophilum–host interactions using the neutrophil-like model of human Caucasian promyelocytic leukemia HL60 cells. We detected a hierarchy of molecules involved in A. phagocytophilum-HL60 interactions with overrepresentation in infected human cells of proteins involved in the reactive oxygen species (ROS) pathway and cell surface monocyte markers. As A. phagocytophilum phagocytosis by neutrophils is inhibited, the results suggested a possible explanation for our bioinformatics data: radical oxygen compounds could induce the killing of bacteria activating NETosis, a unique form of defense mechanism resulting in cell death that is characterized by the release of decondensed chromatin and granular contents to the extracellular space, forming neutrophil extracellular traps (NETs) to eliminate invading microorganisms. Thus, we confirmed the existence of a low NETosis induced in A. phagocytophilum-infected cells by immunofluorescence (IF) experiments. These results provide new insights into the complex mechanisms that govern immune response during A. phagocytophilum host interactions.Anaplasma phagocytophilum son bacterias intracelulares obligatorias que se replican preferentemente dentro de los leucocitos mediante la utilización de compuestos biológicos y procesos de estas células defensivas primarias del huésped. En este estudio, se realizó un análisis bioinformático para caracterizar aún más las interacciones entre A. phagocytophilum y el huésped utilizando el modelo similar a los neutrófilos de células HL60 de leucemia promielocítica caucásica humana. Detectamos una jerarquía de moléculas involucradas en las interacciones A. phagocytophilum -HL60 con una sobrerrepresentación en células humanas infectadas de proteínas involucradas en la vía de especies reactivas de oxígeno (ROS) y marcadores de monocitos de superficie celular. Como A. phagocytophilumse inhibe la fagocitosis de los neutrófilos, los resultados sugirieron una posible explicación para nuestros datos bioinformáticos: los compuestos radicales de oxígeno podrían inducir la muerte de bacterias activando NETosis, una forma única de mecanismo de defensa que resulta en la muerte celular que se caracteriza por la liberación de cromatina descondensada y granular. contenido al espacio extracelular, formando trampas extracelulares de neutrófilos (NET) para eliminar los microorganismos invasores. Por lo tanto, confirmamos la existencia de una NETosis baja inducida en células infectadas por A. phagocytophilum mediante experimentos de inmunofluorescencia (IF). Estos resultados proporcionan nuevos conocimientos sobre los complejos mecanismos que gobiernan la respuesta inmunitaria durante las interacciones del huésped con A. phagocytophilum

    Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease

    No full text
    Inflammatory bowel disease (IBD) is an increasingly urgent medical problem that strongly impairs quality of life for patients. A global rise in incidence has been observed over the last few decades, with the highest incidence rates recorded in North America and Europe. Still, an increased incidence has been reported in the last ten years in newly industrialized countries in Asia, including China and India, both with more than one billion inhabitants. These data underline that IBD is an urgent global health problem. In addition, it is estimated that between 20% and 30% of IBD patients will develop colorectal cancer (CRC) within their lifetime and CRC mortality is approximately 50% amongst IBD patients. Although the exact etiology of IBD is still being defined, it is thought to be due to a complex interaction between many factors, including defects in the innate and adaptive immune system; microbial dysbiosis, i.e., abnormal levels of, or abnormal response to, the gastrointestinal microbiome; a genetic predisposition; and several environmental factors. At present, however, it is not fully understood which of these factors are the initiators of inflammation and which are compounders. The purpose of this review is to analyze the complex balance that exists between these elements to maintain intestinal homeostasis and prevent IBD or limit adverse effects on people’s health

    Low NETosis Induced in Anaplasma phagocytophilum-Infected Cells.

    No full text
    Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. In this study, bioinformatics analysis was conducted to further characterize A. phagocytophilum– host interactions using the neutrophil-like model of human Caucasian promyelocytic leukemia HL60 cells. We detected a hierarchy of molecules involved in A. phagocytophilum-HL60 interactions with overrepresentation in infected human cells of proteins involved in the reactive oxygen species (ROS) pathway and cell surface monocyte markers. As A. phagocytophilum phagocytosis by neutrophils is inhibited, the results suggested a possible explanation for our bioinformatics data: radical oxygen compounds could induce the killing of bacteria activating NETosis, a unique form of defense mechanism resulting in cell death that is characterized by the release of decondensed chromatin and granular contents to the extracellular space, forming neutrophil extracellular traps (NETs) to eliminate invading microorganisms. Thus, we confirmed the existence of a low NETosis induced in A. phagocytophilum- infected cells by immunofluorescence (IF) experiments. These results provide new insights into the complex mechanisms that govern immune response during A. phagocytophilum host interactions

    Metabolic Reprogramming of Innate Immune Cells as a Possible Source of New Therapeutic Approaches in Autoimmunity

    No full text
    Immune cells undergo different metabolic pathways or immunometabolisms to interact with various antigens. Immunometabolism links immunological and metabolic processes and is critical for innate and adaptive immunity. Although metabolic reprogramming is necessary for cell differentiation and proliferation, it may mediate the imbalance of immune homeostasis, leading to the pathogenesis and development of some diseases, such as autoimmune diseases. Here, we discuss the effects of metabolic changes in autoimmune diseases, exerted by the leading actors of innate immunity, and their role in autoimmunity pathogenesis, suggesting many immunotherapeutic approaches

    PD-1/PD-L1 immune-checkpoint blockade induces immune effector cell modulation in metastatic non-small cell lung cancer patients: A single-cell flow cytometry approach

    No full text
    Peripheral immune-checkpoint blockade with mAbs to programmed cell death receptor-1 (PD-1) (either nivolumab or pembrolizumab) or PD-Ligand-1 (PD-L1) (atezolizumab, durvalumab, or avelumab) alone or in combination with doublet chemotherapy represents an expanding treatment strategy for metastatic non-small cell lung cancer (mNSCLC) patients. This strategy lays on the capability of these mAbs to rescue tumor-specific cytotoxic T lymphocytes (CTLs) inactivated throughout PD-1 binding to PD-L1/2 in the tumor sites. This inhibitory interactive pathway is a physiological mechanism of prevention against dangerous overreactions and autoimmunity in case of prolonged and/or repeated CTL response to the same antigen peptides. Therefore, we have carried out a retrospective bioinformatics analysis by single-cell flow cytometry to evaluate if PD-1/PD-L1-blocking mAbs modulate the expression of specific peripheral immune cell subsets, potentially correlated with autoimmunity triggering in 28 mNSCLC patients. We recorded a treatment-related decline in CD4+ T-cell and B-cell subsets and in the neutrophil-to-lymphocyte ratio coupled with an increase in natural killer T (NKT), CD8+PD1+ T cells, and eosinophils. Treatment-related increase in autoantibodies [mainly antinuclear antibodies (ANAs) and extractable nuclear antigen (ENA) antibodies] as well as the frequency of immune-related adverse events were associated with the deregulation of specific immune subpopulations (e.g., NKT cells). Correlative biological/clinical studies with deep immune monitoring are badly needed for a better characterization of the effects produced by PD-1/PD-L1 immune-checkpoint blockade
    corecore