164 research outputs found

    Tissue microarrays: one size does not fit all

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although tissue microarrays (TMAs) are commonly employed in clinical and basic-science research, there are no guidelines for evaluating the appropriateness of a TMA for a given biomarker and tumor type. Furthermore, TMA performance across multiple biomarkers has not been systematically explored.</p> <p>Methods</p> <p>A simulated TMA with between 1 and 10 cores was designed to study tumor expression of 6 biomarkers with varied expression patterns (B7-H1, B7-H3, survivin, Ki-67, CAIX, and IMP3) using 100 patients with clear cell renal cell carcinoma (RCC). We evaluated agreement between whole tissue section and TMA immunohistochemical biomarker quantification to assess how many TMA cores are necessary to adequately represent RCC whole tissue section expression. Additionally, we evaluated associations of whole tissue section and TMA expression with RCC-specific death.</p> <p>Results</p> <p>The number of simulated TMA cores necessary to adequately represent whole tissue section quantification is biomarker specific. Although 2-3 cores appeared adequate for B7-H3, Ki-67, CAIX, and IMP3, even as many as 10 cores resulted in poor agreement for B7-H1 and survivin compared to RCC whole tissue sections. While whole tissue section B7-H1 was significantly associated with RCC-specific death, no significant associations were detected using as many as 10 TMA cores, suggesting that TMAs can result in false-negative findings if the TMA is not optimally designed.</p> <p>Conclusions</p> <p>Prior to TMA analysis, the number of TMA cores necessary to accurately represent biomarker expression on whole tissue sections should be established as there is not a one-size-fits-all TMA. We illustrate the use of a simulated TMA as a cost-effective tool for this purpose.</p

    Intercalation of small molecules into DNA in chromatin is primarily controlled by superhelical constraint

    Get PDF
    The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential

    Loss of the nuclear pool of ubiquitin ligase CHIP/STUB1 in breast cancer unleashes the MZF1-cathepsin pro-oncogenic program

    Get PDF
    CHIP/STUB1 ubiquitin ligase is a negative co-chaperone for HSP90/HSC70, and its expression is reduced or lost in several cancers, including breast cancer. Using an extensive and well-annotated breast cancer tissue collection, we identified the loss of nuclear but not cytoplasmic CHIP to predict more aggressive tumorigenesis and shorter patient survival, with loss of CHIP in two-thirds of ErbB2+ and triple-negative breast cancers and in one-third of ER+ breast cancers. Reduced CHIP expression was seen in breast cancer patient-derived xenograft tumors and in ErbB2+ and triple-negative breast cancer cell lines. Ectopic CHIP expression in ErbB2+ lines suppressed in vitro oncogenic traits and in vivo xenograft tumor growth. An unbiased screen for CHIP-regulated nuclear transcription factors identified many candidates whose DNA-binding activity was up-or down-regulated by CHIP. We characterized Myeloid Zinc Finger 1 (MZF1) as a CHIP target given its recently identified role as a positive regulator of cathepsin B/L (CTSB/L)-mediated tumor cell invasion downstream of ErbB2. We show that CHIP negatively regulates CTSB/L expression in ErbB2+ and other breast cancer cell lines. CTSB inhibition abrogates invasion and matrix degradation in vitro and halts ErbB2+ breast cancer cell line xenograft growth. We conclude that loss of CHIP remodels the cellular transcriptome to unleash critical pro-oncogenic pathways, such as the matrix-degrading enzymes of the cathepsin family, whose components can provide new therapeutic opportunities in breast and other cancers with loss of CHIP expression

    A simplified microwave-based motion detector for home cage activity monitoring in mice

    Get PDF
    Background: Locomotor activity of rodents is an important readout to assess well-being and physical health, and is pivotal for behavioral phenotyping. Measuring homecage-activity with standard and cost-effective optical methods in mice has become difficult, as modern housing conditions (e.g. individually ventilated cages, cage enrichment) do not allow constant, unobstructed, visual access. Resolving this issue either makes greater investments necessary, especially if several experiments will be run in parallel, or is at the animals' expense. The purpose of this study is to provide an easy, yet satisfying solution for the behavioral biologist at novice makers level. Results: We show the design, construction and validation of a simplified, low-cost, radar-based motion detector for home cage activity monitoring in mice. In addition we demonstrate that mice which have been selectively bred for low levels of anxiety-related behavior (LAB) have deficits in circadian photoentrainment compared to CD1 control animals. Conclusion: In this study we have demonstrated that our proposed low-cost microwave-based motion detector is well-suited for the study of circadian rhythms in mice

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo

    Hydrodynamical modeling of potential surface waves

    No full text
    Abstract not available

    Use of Ground Surface Caving Model to Predict Karst Cavity Effect on Soil Mass Deformation

    No full text
    corecore