397 research outputs found

    Who Is Your Successful Aging Role Model?

    Get PDF

    Response of coconut seedlings to elevated CO2 and high temperature in drought and high nutrient conditions

    Get PDF
    The interaction effect of climate change variables elevated CO2 and elevated temperature (ET) with drought and nutrients on growth and development of coconut seedlings was studied in an open top chamber (OTC) at Central Plantation Crops Research Institute (CPCRI), Kasaragod. Seedlings were exposed to ambient (normal CO2 and temperature), elevated CO2 (550 and 700 ppm), ET (3 °C above ambient) and ET + elevated CO2 (550 ppm CO2 + 3 °C). In each OTC, a set of seedlings were subjected to drought (50% FC) and another set was maintained at 150 per cent recommended dose of fertilizer (RDF). Seedlings in elevated CO2 treatments accumulated significantly higher biomass. It was 1.13 and 1.98 kg seedling-1 with 550 and 700 ppm CO2 respectively as against 1.10 in ambient treatment. It was the least in ET treatment (0.91). The stomatal conductance (gs) and transpiration (Tr) of plants grown under elevated CO2 was reduced without affecting the photosynthesis. As a consequence, the whole plant WUE of coconut seedlings grown under elevated CO2 was high both under control and drought condition. The WUE significantly reduced both in high temperature and drought stressed plants. Elevated CO2 to certain extent compensated for water stress and high temperature induced reduction in growth of coconut

    Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

    Get PDF
    Additional file 3. Fermentation profiles of Y133 and Y133-IIL in the presence of 1 % [BMIM]Cl at pH 6.5 and pH 5.0, and either aerobic or anaerobic conditions (n = 3, Mean ± S.E, except n = 2 for Y133 pH 6.5 anaerobic 72 h)

    The long-term impact of the MEMA kwa Vijana adolescent sexual and reproductive health intervention: effect of dose and time since intervention exposure.

    Get PDF
    BACKGROUND: Despite recent decreases in HIV incidence in many sub-Saharan African countries, there is little evidence that specific behavioural interventions have led to a reduction in HIV among young people. Further and wider-scale decreases in HIV require better understanding of when behaviour change occurs and why. The MEMA kwa Vijana adolescent sexual and reproductive health intervention has been implemented in rural Mwanza, Tanzania since 1999. A long-term evaluation in 2007/8 found that the intervention improved knowledge, attitudes to sex and some reported risk behaviours, but not HIV or HSV2 prevalence. The aim of this paper was to assess the differential impact of the intervention according to gender, age, marital status, number of years of exposure and time since last exposure to the intervention. METHODS: In 2007, a cross-sectional survey was conducted in the 20 trial communities among 13,814 young people (15-30 yrs) who had attended intervention or comparison schools between 1999 and 2002. Outcomes for which the intervention had an impact in 2001 or 2007 were included in this subgroup analysis. Data were analysed using cluster-level methods for stratified cluster-randomised trials, using interaction tests to determine if intervention impact differed by subgroup. RESULTS: Taking into account multiplicity of testing, concurrence with a priori hypotheses and consistency within the results no strong effect-modifiers emerged. Impact on pregnancy knowledge and reported attitudes to sex increased with years of exposure to high-quality intervention. CONCLUSIONS: The desirable long-term impact of the MEMA kwa Vijana intervention did not vary greatly according to the subgroups examined. This suggests that the intervention can have an impact on a broad cross-section of young people in rural Mwanza. TRIAL REGISTRATION: ClinicalTrials.gov NCT00248469

    Acetylation of C/EBP alpha inhibits its granulopoietic function

    Get PDF
    CCAAT/enhancer-binding protein alpha (C/EBP alpha) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBP alpha at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBP alpha DNA-binding ability and modulates C/EBP alpha transcriptional activity. Acetylated C/EBP alpha is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)-mediated granulocytic differentiation of 32Dcl3 cells. C/EBP alpha mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBP alpha-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBP alpha and demonstrate the importance of C/EBP alpha acetylation in myeloid differentiation

    NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity

    Full text link
    T cell-directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-Îł (IFN-Îł)-interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5-IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5-IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a+ NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5-IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-Îł-inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a+ CXCR6+ NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell-focused therapies and offer mechanistic insights into how T cell-NK cell-DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance

    NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity

    Get PDF
    T cell-directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-Îł (IFN-Îł)-interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5-IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5-IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a; +; NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5-IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-Îł-inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a; +; CXCR6; +; NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell-focused therapies and offer mechanistic insights into how T cell-NK cell-DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance
    • 

    corecore