167 research outputs found

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al

    Vaccine delivery with microneedle skin patches in nonhuman primates

    Get PDF
    Transcutaneous drug delivery from planar skin patches is effective for small-molecule drugs and skin-permeable vaccine adjuvants. However, to achieve efficient delivery of vaccines and other macromolecular therapeutics into the skin, penetration of the stratum corneum is needed. Topically applied skin patches with micron-scale projections ('microneedles') pierce the upper layers of the skin and enable vaccines that are coated on or encapsulated within the microneedles to be dispersed into the skin. Although millimeter-scale syringes have shown promise for vaccine delivery in humans and technologies, such as the Dermaroller (Dermaroller, Wolfenbüttel, Germany), exist for creating microscale punctures in the skin for delivery of solutions of therapeutics, solid microprojection microneedles coated with dry vaccine formulations offer a number of valuable features for vaccination, including reduced risk of blood-borne pathogen transmission or needle-stick injury, the potential for vaccine administration by minimally trained personnel or even self administration and the use of solid-state vaccine formulations that may reduce or eliminate cold-chain requirements in vaccine distribution. Recent studies in mice have demonstrated the ability of microneedles to effectively deliver vaccines to the skin, eliciting protective immunity to influenza, hepatitis C and West Nile virus.Ragon Institute of MGH, MIT and HarvardMassachusetts Institute of TechnologyHarvard UniversityNational Institutes of Health (U.S.) (AI095109)National Institutes of Health (U.S.) (AI096040)National Institutes of Health (U.S.) (AI095985)National Institutes of Health (U.S.) (AI078526)National Institutes of Health (U.S.) (AI060354)United States. Dept. of Defense (Contract W911NF-07-D-0004

    Simian-Human Immunodeficiency Infection – Is the Course Set in the Acute Phase?

    Get PDF
    Identifying early predictors of infection outcome is important for the clinical management of HIV infection, and both viral load and CD4+ T cell level have been found to be useful predictors of subsequent disease progression. Very high viral load or extensively depleted CD4+ T cells in the acute phase often result in failure of immune control, and a fast progression to AIDS. It is usually assumed that extensive loss of CD4+ T cells in the acute phase of HIV infection prevents the establishment of robust T cell help required for virus control in the chronic phase. We tested this hypothesis using viral load and CD4+ T cell number of SHIV-infected rhesus macaques. In acute infection, the lowest level of CD4+ T cells was a good predictor of later survival; animals having less than 3.3% of baseline CD4+ T cells progressed to severe disease, while animals with more than 3.3% of baseline CD4+ T cells experienced CD4+ T cell recovery. However, it is unclear if the disease progression was caused by early depletion, or was simply a result of a higher susceptibility of an animal to infection. We derived a simple relationship between the expected number of CD4+ T cells in the acute and chronic phases for a constant level of host susceptibility or resistance. We found that in most cases, the depletion of CD4+ T cells in chronic infection was consistent with the prediction from the acute CD4+ T cell loss. However, the animals with less than 3.3% of baseline CD4 T cells in the acute phase were approximately 20% more depleted late in the infection than expected based on constant level of virus control. This suggests that severe acute CD4 depletion indeed impairs the immune response

    CD4+ T Cell Effects on CD8+ T Cell Location Defined Using Bioluminescence

    Get PDF
    T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are “helped” by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell “help” is to program the homing potential of CD8+ T cells

    Identification of HIV-1 Epitopes that Induce the Synthesis of a R5 HIV-1 Suppression Factor by Human CD4+ T Cells Isolated from HIV-1 Immunized Hu-PBL SCID Mice

    Get PDF
    We have previously reported that immunization of the severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood mononuclear cells (PBMC) (hu-PBL-SCID mice) with inactivated human immunodeficiency virus type-1 (HIV-1)-pulsed-autologous dendritic cells (HIV-DC) elicits HIV-1-reactive CD4+ T cells that produce an as yet to be defined novel soluble factor in vitro with anti-viral properties against CCR5 tropic (R5) HIV-1 infection. These findings led us to perform studies designed to identify the lineage of the cell that synthesizes such a factor in vitro and define the epitopes of HIV-1 protein that have specificity for the induction of such anti-viral factor. Results of our studies show that this property is a function of CD4+ but not CD8+ T cells. Human CD4+ T cells were thus recovered from the HIV-DC-immunized hu-PBL-SCID mice and were re-stimulated in vitro by co-culture for 2 days with autologous adherent PBMC as antigen presenting cells, APC previously pulsed with inactivated HIV in IL-2-containing medium to expand HIV-1-reactive CD4+ T cells. Aliquots of these re-stimulated CD4+ T cells were then co-cultured with similar APC's that were previously pulsed with 10 μg/ml of a panel of HIV peptides for an additional 2 days, and their culture supernatants were examined for the production of both the R5 HIV-1 suppression factor and IFN-Υ. The data presented herein show that the HIV-1 primed CD4+ T cells produced the R5 suppression factor in response to a wide variety of HIV-1 gag, env, pol, nef or vif peptides, depending on the donor of the CD4+ T cells. Simultaneous production of human interferon (IFN)-Υ was observed in some cases. These results indicate that human CD4+ T cells in PBMC of HIV-1 naive donors have a wide variety of HIV-1 epitope-specific CD4+ T cell precursors that are capable of producing the R5 HIV-1 suppression factor upon DC-based vaccination with whole inactivated HIV-1

    Dynamic changes of cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and natural killer T (NKT) cells in patients with acute hepatitis B infection

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>The goal of this study is to observe changes in HBcAg-specific cytotoxic T lymphocytes (CTLs), natural killer (NK) and natural killer T (NKT) cells from peripheral blood and to relate such changes on viral clearance and liver injury in patients with acute hepatitis B (AHB).</p> <p><b>Methods</b></p> <p>Dynamic profiles on the frequency of HLA-A0201-restricted HBcAg18-27 pentamer complex (MHC-Pentamer)-specific CTLs and lymphocyte subsets in AHB patients were analyzed in addition to liver function tests, HBV serological markers, and HBV DNA levels. ELISPOT was used to detect interferon-gamma (INF-γ) secretion in specific CTLs stimulated with known T cell epitope peptides associated with HBV surface protein, polymerase, and core protein.</p> <p><b>Results</b></p> <p>HBV-specific CTL frequencies in AHB patients were much higher than in patients with chronic hepatitis B (CHB) (p < 0.05). HBeAg and HBV DNA disappeared earlier in AHB patients with a high frequency of HBV-specific CTLs compared with those with a low frequency of HBV-specific CTLs (p = 0.001 and 0.024, respectively). INF-γ spots of effector cells stimulated by Pol575-583, Env348-357, or Core18-27 epitope peptides were significantly greater in AHB patients than in CHB patients (p < 0.01). CD3<sup>+</sup>CD8<sup>+ </sup>T cell numbers in AHB patients was more than observed in the healthy control group from the first to the fourth week after admission (p <it>= </it>0.008 and 0.01, respectively); the number of CD3<sup>+</sup>CD8<sup>+ </sup>T cells and frequency of HBcAg18-27-specific CTLs in AHB patients reached peak levels at the second week after admission. NK and NKT cell numbers were negatively correlated with the frequency of HBcAg-specific CTLs (<it>r </it>= -0.266, p = 0.05).</p> <p><b>Conclusions</b></p> <p>Patients with AHB possess a higher frequency of HBcAg-specific CTLs than CHB patients. The frequency of specific CTLs in AHB patients is correlated with HBeAg clearance indicating that HBV-specific CTLs play an important role in viral clearance and the self-limited process of the disease. Furthermore, NK and NKT cells are likely involved in the early, non-specific immune response to clear the virus.</p

    A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging

    No full text
    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy

    Serologic Cross-Reactivity of Human IgM and IgG Antibodies to Five Species of Ebola Virus

    Get PDF
    Five species of Ebola virus (EBOV) have been identified, with nucleotide differences of 30–45% between species. Four of these species have been shown to cause Ebola hemorrhagic fever (EHF) in humans and a fifth species (Reston ebolavirus) is capable of causing a similar disease in non-human primates. While examining potential serologic cross-reactivity between EBOV species is important for diagnostic assays as well as putative vaccines, the nature of cross-reactive antibodies following EBOV infection has not been thoroughly characterized. In order to examine cross-reactivity of human serologic responses to EBOV, we developed antigen preparations for all five EBOV species, and compared serologic responses by IgM capture and IgG enzyme-linked immunosorbent assay (ELISA) in groups of convalescent diagnostic sera from outbreaks in Kikwit, Democratic Republic of Congo (n = 24), Gulu, Uganda (n = 20), Bundibugyo, Uganda (n = 33), and the Philippines (n = 18), which represent outbreaks due to four different EBOV species. For groups of samples from Kikwit, Gulu, and Bundibugyo, some limited IgM cross-reactivity was noted between heterologous sera-antigen pairs, however, IgM responses were largely stronger against autologous antigen. In some instances IgG responses were higher to autologous antigen than heterologous antigen, however, in contrast to IgM responses, we observed strong cross-reactive IgG antibody responses to heterologous antigens among all sets of samples. Finally, we examined autologous IgM and IgG antibody levels, relative to time following EHF onset, and observed early peaking and declining IgM antibody levels (by 80 days) and early development and persistence of IgG antibodies among all samples, implying a consistent pattern of antibody kinetics, regardless of EBOV species. Our findings demonstrate limited cross-reactivity of IgM antibodies to EBOV, however, the stronger tendency for cross-reactive IgG antibody responses can largely circumvent limitations in the utility of heterologous antigen for diagnostic assays and may assist in the development of antibody-mediated vaccines to EBOV

    Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression

    Get PDF
    Background: The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings: Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl- CoA isomerase (PECI) on chromosome 6. Conclusions: Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclearencoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis

    A DNA Vaccine against Chikungunya Virus Is Protective in Mice and Induces Neutralizing Antibodies in Mice and Nonhuman Primates

    Get PDF
    Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines
    corecore