24 research outputs found
Toward High-Precision Measures of Large-Scale Structure
I review some results of estimation of the power spectrum of density
fluctuations from galaxy redshift surveys and discuss advances that may be
possible with the Sloan Digital Sky Survey. I then examine the realities of
power spectrum estimation in the presence of Galactic extinction, photometric
errors, galaxy evolution, clustering evolution, and uncertainty about the
background cosmology.Comment: 24 pages, including 11 postscript figures. Uses crckapb.sty (included
in submission). To appear in ``Ringberg Workshop on Large-Scale Structure,''
ed D. Hamilton (Kluwer, Amsterdam), p. 39
Large Scale Structure of the Universe
Galaxies are not uniformly distributed in space. On large scales the Universe
displays coherent structure, with galaxies residing in groups and clusters on
scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of
galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space,
known as voids, contain very few galaxies and span the volume in between these
structures. This observed large scale structure depends both on cosmological
parameters and on the formation and evolution of galaxies. Using the two-point
correlation function, one can trace the dependence of large scale structure on
galaxy properties such as luminosity, color, stellar mass, and track its
evolution with redshift. Comparison of the observed galaxy clustering
signatures with dark matter simulations allows one to model and understand the
clustering of galaxies and their formation and evolution within their parent
dark matter halos. Clustering measurements can determine the parent dark matter
halo mass of a given galaxy population, connect observed galaxy populations at
different epochs, and constrain cosmological parameters and galaxy evolution
models. This chapter describes the methods used to measure the two-point
correlation function in both redshift and real space, presents the current
results of how the clustering amplitude depends on various galaxy properties,
and discusses quantitative measurements of the structures of voids and
filaments. The interpretation of these results with current theoretical models
is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets,
Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume
editor W. C. Keel, v2 includes additional references, updated to match
published versio
TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet
The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (~1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 ± 0.08 R⊕ and a mass of M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm−3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap" and the "hot Neptune desert," HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition
TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet
The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32-1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion
The establishment of the Standard Cosmological Model through observations
Over the last decades, observations with increasing quality have
revolutionized our understanding of the general properties of the Universe.
Questions posed for millenia by mankind about the origin, evolution and
structure of the cosmos have found an answer. This has been possible mainly
thanks to observations of the Cosmic Microwave Background, of the large-scale
distribution of matter structure in the local Universe, and of type Ia
supernovae that have revealed the accelerated expansion of the Universe. All
these observations have successfully converged into the so-called "concordance
model". In spite of all these observational successes, there are still some
important open problems, the most obvious of which are what generated the
initial matter inhomogeneities that led to the structure observable in today's
Universe, and what is the nature of dark matter, and of the dark energy that
drives the accelerated expansion. In this chapter I will expand on the previous
aspects. I will present a general description of the Standard Cosmological
Model of the Universe, with special emphasis on the most recent observations
that have us allowed to consolidate this model. I will also discuss the
shortfalls of this model, its most pressing open questions, and will briefly
describe the observational programmes that are being planned to tackle these
issues.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern
Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka;
publisher Springer Nature) funded by the European Union Erasmus+ Strategic
Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236
We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star HD 108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry, reconnaissance, and precise Doppler spectroscopy, as well as high-resolution imaging, to validate the planetary nature of the objects transiting HD 108236, also known as the TESS Object of Interest (TOI) 1233. The innermost planet is a possibly rocky super-Earth with a period of days and has a radius of 1.586 ± 0.098 R⊕. The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of R⊕, 2.72 ± 0.11 R⊕, and R⊕ and periods of days, days, and days, respectively. With V and Ks magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission spectroscopy. HD 108236 is the brightest Sun-like star in the visual (V) band known to host four or more transiting exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures and share a common history of insolation from a Sun-like star (R⋆ = 0.888 ± 0.017 R⊙, Teff = 5730 ± 50 K), making HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution
Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization
We report the detection of a transiting Earth-size planet around GJ 357, a nearby M2.5 V star, using data from the Transiting Exoplanet Survey Satellite (TESS). GJ 357 b (TOI-562.01) is a transiting, hot, Earth-sized planet (Teq = 525 ± 11 K) with a radius of Rb = 1.217 ± 0.084 R⊕ and an orbital period of Pb = 3.93 d. Precise stellar radial velocities from CARMENES and PFS, as well as archival data from HIRES, UVES, and HARPS also display a 3.93-day periodicity, confirming the planetary nature and leading to a planetary mass of Mb = 1.84 ± 0.31 M⊕. In addition to the radial velocity signal for GJ 357 b, more periodicities are present in the data indicating the presence of two further planets in the system: GJ 357 c, with a minimum mass of Mc = 3.40 ± 0.46 M⊕ in a 9.12 d orbit, and GJ 357 d, with a minimum mass of Md = 6.1 ± 1.0 M⊕ in a 55.7 d orbit inside the habitable zone. The host is relatively inactive and exhibits a photometric rotation period of Prot = 78 ± 2 d. GJ 357 b isto date the second closest transiting planet to the Sun, making it a prime target for further investigations such as transmission spectroscopy. Therefore, GJ 357 b represents one of the best terrestrial planets suitable for atmospheric characterization with the upcoming JWST and ground-based ELTs