213 research outputs found

    Text-based Editing of Talking-head Video

    No full text
    Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker has been modified, while maintaining a seamless audio-visual flow (i.e. no jump cuts). Our method automatically annotates an input talking-head video with phonemes, visemes, 3D face pose and geometry, reflectance, expression and scene illumination per frame. To edit a video, the user has to only edit the transcript, and an optimization strategy then chooses segments of the input corpus as base material. The annotated parameters corresponding to the selected segments are seamlessly stitched together and used to produce an intermediate video representation in which the lower half of the face is rendered with a parametric face model. Finally, a recurrent video generation network transforms this representation to a photorealistic video that matches the edited transcript. We demonstrate a large variety of edits, such as the addition, removal, and alteration of words, as well as convincing language translation and full sentence synthesis

    Tiling of the five-fold surface of Al(70)Pd(21)Mn(9)

    Full text link
    The nature of the five-fold surface of Al(70)Pd(21)Mn(9) has been investigated using scanning tunneling microscopy. From high resolution images of the terraces, a tiling of the surface has been constructed using pentagonal prototiles. This tiling matches the bulk model of Boudard et. al. (J. Phys.: Cond. Matter 4, 10149, (1992)), which allows us to elucidate the atomic nature of the surface. Furthermore, it is consistent with a Penrose tiling T^*((P1)r) obtained from the geometric model based on the three-dimensional tiling T^*(2F). The results provide direct confirmation that the five-fold surface of i-Al-Pd-Mn is a termination of the bulk structure.Comment: 4 pages, 4 figure

    Thermodynamical fingerprints of fractal spectra

    Full text link
    We investigate the thermodynamics of model systems exhibiting two-scale fractal spectra. In particular, we present both analytical and numerical studies on the temperature dependence of the vibrational and electronic specific heats. For phonons, and for bosons in general, we show that the average specific heat can be associated to the average (power law) density of states. The corrections to this average behavior are log-periodic oscillations which can be traced back to the self-similarity of the spectral staircase. In the electronic case, even if the thermodynamical quantities exhibit a strong dependence on the particle number, regularities arise when special cases are considered. Applications to substitutional and hierarchical structures are discussed.Comment: 8 latex pages, 9 embedded PS figure

    Quasiperiodic Envelope Solitons

    Get PDF
    We analyse nonlinear wave propagation and cascaded self-focusing due to second-harmonic generation in Fibbonacci optical superlattices and introduce a novel concept of nonlinear physics, the quasiperiodic soliton, which describes spatially localized self-trapping of a quasiperiodic wave. We point out a link between the quasiperiodic soliton and partially incoherent spatial solitary waves recently generated experimentally.Comment: Submitted to PRL. 4 pages with 5 figure

    Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer

    Get PDF
    We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by x-ray photoelectron diffraction, low-energy electron diffraction and electron backscatter diffraction. This overlayer is also characterized by a reduced density of states near the Fermi edge as expected for quasicrystals. This is the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001

    Self-similarity and novel sample-length-dependence of conductance in quasiperiodic lateral magnetic superlattices

    Full text link
    We study the transport of electrons in a Fibonacci magnetic superlattice produced on a two-dimensional electron gas modulated by parallel magnetic field stripes arranged in a Fibonacci sequence. Both the transmission coefficient and conductance exhibit self-similarity and the six-circle property. The presence of extended states yields a finite conductivity at infinite length, that may be detected as an abrupt change in the conductance as the Fermi energy is varied, much as a metal-insulator transition. This is a unique feature of transport in this new kind of structure, arising from its inherent two-dimensional nature.Comment: 9 pages, 5 figures, revtex, important revisions made. to be published in Phys. Rev.

    Aperiodicity-Induced Second-Order Phase Transition in the 8-State Potts Model

    Full text link
    We investigate the critical behavior of the two-dimensional 8-state Potts model with an aperiodic distribution of the exchange interactions between nearest-neighbor rows. The model is studied numerically through intensive Monte Carlo simulations using the Swendsen-Wang cluster algorithm. The transition point is located through duality relations, and the critical behavior is investigated using FSS techniques at criticality. For strong enough fluctuations of the aperiodic sequence under consideration, a second order phase transition is found. The exponents β/ν\beta/\nu and γ/ν\gamma /\nu are obtained at the new fixed point.Comment: LaTeX file with Revtex, 4 pages, 5 eps figures, to appear in Phys. Rev. Let

    Crossover between aperiodic and homogeneous semi-infinite critical behaviors in multilayered two-dimensional Ising models

    Full text link
    We investigate the surface critical behavior of two-dimensional multilayered aperiodic Ising models in the extreme anisotropic limit. The system under consideration is obtained by piling up two types of layers with respectively pp and qq spin rows coupled via nearest neighbor interactions λr\lambda r and λ\lambda, where the succession of layers follows an aperiodic sequence. Far away from the critical regime, the correlation length ξ⊥\xi_\perp is smaller than the first layer width and the system exhibits the usual behavior of an ordinary surface transition. In the other limit, in the neighborhood of the critical point, ξ⊥\xi_\perp diverges and the fluctuations are sensitive to the non-periodic structure of the system so that the critical behavior is governed by a new fixed point. We determine the critical exponent associated to the surface magnetization at the aperiodic critical point and show that the expected crossover between the two regimes is well described by a scaling function. From numerical calculations, the parallel correlation length ξ∥\xi_\parallel is then found to behave with an anisotropy exponent zz which depends on the aperiodic modulation and the layer widths.Comment: LaTeX file, 9 pages, 8 eps figures, to appear in Phys. Rev.

    Quantum mechanical relaxation of open quasiperiodic systems

    Full text link
    We study the time evolution of the survival probability P(t)P(t) in open one-dimensional quasiperiodic tight-binding samples of size LL, at critical conditions. We show that it decays algebraically as P(t)∼t−αP(t)\sim t^{-\alpha} up to times t∗∼Lγt^*\sim L^{\gamma}, where α=1−D0E\alpha = 1-D_0^E, γ=1/D0E\gamma=1/D_0^E and D0ED_0^E is the fractal dimension of the spectrum of the closed system. We verified these results for the Harper model at the metal-insulator transition and for Fibonacci lattices. Our predictions should be observable in propagation experiments with electrons or classical waves in quasiperiodic superlattices or dielectric multilayers.Comment: 4 pages, 5 figure
    • …
    corecore