We study the transport of electrons in a Fibonacci magnetic superlattice
produced on a two-dimensional electron gas modulated by parallel magnetic field
stripes arranged in a Fibonacci sequence. Both the transmission coefficient and
conductance exhibit self-similarity and the six-circle property. The presence
of extended states yields a finite conductivity at infinite length, that may be
detected as an abrupt change in the conductance as the Fermi energy is varied,
much as a metal-insulator transition. This is a unique feature of transport in
this new kind of structure, arising from its inherent two-dimensional nature.Comment: 9 pages, 5 figures, revtex, important revisions made. to be published
in Phys. Rev.