16 research outputs found

    Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes

    Get PDF
    Background: Alkaline proteases are among the most important classes of industrial hydrolytic enzymes. The industrial demand for alkaline proteases with favorable properties continues to enhance the search for new enzymes. The present study focused on isolation of new alkaline producing alkaliphilic bacteria from hyper saline soda lakes and optimization of the enzyme production. Results: A new potent alkaline protease producing halotolerant alkaliphilic isolate NPST-AK15 was isolated from hyper saline soda lakes, which affiliated to Bacillus sp. based on 16S rRNA gene analysis. Organic nitrogen supported enzyme production showing maximum yield using yeast extract, and as a carbon source, fructose gave maximum protease production. NPST-AK15 can grow over a broad range of NaCl concentrations (0\u201320%), showing maximal growth and enzyme production at 0\u20135%, indicated the halotolerant nature of this bacterium. Ba and Ca enhanced enzyme production by 1.6 and 1.3 fold respectively. The optimum temperature and pH for both enzyme production and cell growth were at 40\ub0C and pH 11, respectively. Alkaline protease secretion was coherent with the growth pattern, started at beginning of the exponential phase and reached maximal in mid stationary phase (36 h). Conclusions: A newhalotolerant alkaliphilic alkaline protease producing Bacillus sp.NPST-AK15 was isolated from soda lakes. Optimization of various fermentation parameters resulted in an increase of enzyme yield by 22.8 fold, indicating the significance of optimization of the fermentation parameters to obtain commercial yield of the enzyme. NPST-AK15 and its extracellular alkaline protease with salt tolerance signify their potential applicability in the laundry industry and other applications

    Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes

    No full text
    Background: Alkaline proteases are among the most important classes of industrial hydrolytic enzymes. The industrial demand for alkaline proteases with favorable properties continues to enhance the search for new enzymes. The present study focused on isolation of new alkaline producing alkaliphilic bacteria from hyper saline soda lakes and optimization of the enzyme production. Results: A new potent alkaline protease producing halotolerant alkaliphilic isolate NPST-AK15 was isolated from hyper saline soda lakes, which affiliated to Bacillus sp. based on 16S rRNA gene analysis. Organic nitrogen supported enzyme production showing maximum yield using yeast extract, and as a carbon source, fructose gave maximum protease production. NPST-AK15 can grow over a broad range of NaCl concentrations (0–20%), showing maximal growth and enzyme production at 0–5%, indicated the halotolerant nature of this bacterium. Ba and Ca enhanced enzyme production by 1.6 and 1.3 fold respectively. The optimum temperature and pH for both enzyme production and cell growth were at 40°C and pH 11, respectively. Alkaline protease secretion was coherent with the growth pattern, started at beginning of the exponential phase and reached maximal in mid stationary phase (36 h). Conclusions: A new halotolerant alkaliphilic alkaline protease producing Bacillus sp. NPST-AK15 was isolated from soda lakes. Optimization of various fermentation parameters resulted in an increase of enzyme yield by 22.8 fold, indicating the significance of optimization of the fermentation parameters to obtain commercial yield of the enzyme. NPST-AK15 and its extracellular alkaline protease with salt tolerance signify their potential applicability in the laundry industry and other applications

    Clonal diversity and antimicrobial resistance of Enterococcus faecalis isolated from endodontic infections

    Get PDF
    Background: Enterococcus faecalis is considered to be one of most prevalent species in the oral cavity, particularly in endodontic infections. The aim of the present study was to investigate the prevalence of E. faecalis in dental root canals, clonal diversity by restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD-PCR) analysis, and the antibiotic susceptibility of E. faecalis isolates. Results: Among the bacterial strains isolated from dental root canal specimens (n = 82), E. faecalis was determined to have the highest prevalence followed by Streptococcus viridians, Leuconostoc mesenteroides, Staphylococcus aureus, Streptococcus mitis, and Pediococcus pentosaceus. Cluster analysis of RAPD-PCR and RFLP patterns of the E. faecalis isolates discriminated five and six different genotypes, respectively. Among the tested strains, 43%, 52% and 5% were susceptible, intermediate resistant, and resistant to erythromycin, respectively. In addition, one strain (E-12) was intermediate resistant to linezolid, and one isolate (E-16) was resistant to tetracycline. Interestingly, many of the intermediate resistant/resistant strains were grouped in clusters 5 and 6, according RAPD and to RFLP, respectively. Conclusions: E. faecalis demonstrated the highest prevalence in the tested dental root canal specimens collected from Saudi patients and were grouped into five to six different genotypes. Different levels of antimicrobial susceptibility were observed in the tested E. faecalis strains, which clearly indicated that although bacterial strains may be similar, point mutations can result in extreme susceptibility or resistance to various antibiotics. This phenomenon is a cause for concern for clinicians in the treatment of dental infections caused by E. faecalis

    C 10(3): The Ten Parameter Conformal Group as a Datum Transformation in Three-Dimensional Euclidean Space

    No full text

    “Ellipsoid-of-Revolution to Cylinder”: Transverse Aspect

    No full text

    “Ellipsoid-of-Revolution to Cylinder”: Polar Aspect

    No full text

    Ellipsoid-of-Revolution to Tangential Plane

    No full text

    Map Projections of Alternative Structures: Torus, Hyperboloid, Paraboloid, Onion Shape and Others

    No full text
    corecore