4,438 research outputs found
Assessing the Sensitivity of Different Life Stages for Sexual Disruption in Roach (Rutilus rutilus) Exposed to Effluents from Wastewater Treatment Works
Surveys of U.K. rivers have shown a high incidence of sexual disruption in populations of wild roach (Rutilus rutilus) living downstream from wastewater treatment works (WwTW), and the degree of intersex (gonads containing both male and female structural characteristics) has been correlated with the concentration of effluent in those rivers. In this study, we investigated feminized responses to two estrogenic WwTWs in roach exposed for periods during life stages of germ cell division (early life and the postspawning period). Roach were exposed as embryos from fertilization up to 300 days posthatch (dph; to include the period of gonadal sex differentiation) or as postspawning adult males, and including fish that had received previous estrogen exposure, for either 60 or 120 days when the annual event of germ cell proliferation occurs. Both effluents induced vitellogenin synthesis in both life stages studied, and the magnitude of the vitellogenic responses paralleled the effluent content of steroid estrogens. Feminization of the reproductive ducts occurred in male fish in a concentration-dependent manner when the exposure occurred during early life, but we found no effects on the reproductive ducts in adult males. Depuration studies (maintenance of fish in clean water after exposure to WwTW effluent) confirmed that the feminization of the reproductive duct was permanent. We found no evidence of ovotestis development in fish that had no previous estrogen exposure for any of the treatments. In wild adult roach that had previously received exposure to estrogen and were intersex, the degree of intersex increased during the study period, but this was not related to the immediate effluent exposure, suggesting a previously determined programming of ovotestis formation
Exposure to diesel exhaust particles increases susceptibility to invasive pneumococcal disease.
BACKGROUND: The World Health Organization estimates that air pollution is responsible for 7 million deaths per annum, with 7% of these attributable to pneumonia. Many of these fatalities have been linked to exposure to high levels of airborne particulates, such as diesel exhaust particles (DEPs). OBJECTIVES: We sought to determine whether exposure to DEPs could promote the progression of asymptomatic nasopharyngeal carriage of Streptococcus pneumoniae to invasive pneumococcal disease. METHODS: We used mouse models and in vitro assays to provide a mechanistic understanding of the link between DEP exposure and pneumococcal disease risk, and we confirmed our findings by using induced sputum macrophages isolated from healthy human volunteers. RESULTS: We demonstrate that inhaled exposure to DEPs disrupts asymptomatic nasopharyngeal carriage of S pneumoniae in mice, leading to dissemination to lungs and blood. Pneumococci are transported from the nasopharynx to the lungs following exposure to DEPs, leading to increased proinflammatory cytokine production, reduced phagocytic function of alveolar macrophages, and consequently, increased pneumococcal loads within the lungs and translocation into blood. These findings were confirmed by using DEP-exposed induced sputum macrophages isolated from healthy volunteers, demonstrating that impaired innate immune mechanisms following DEP exposure are also at play in humans. CONCLUSION: Lung inhaled DEPs increase susceptibility to pneumococcal disease by leading to loss of immunological control of pneumococcal colonisation, increased inflammation, tissue damage, and systemic bacterial dissemination
Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry
The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling
Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites.
Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. VIII: The Eighth Year (2015-2016)
Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we
collected times of superhump maxima for 128 SU UMa-type dwarf novae observed
mainly during the 2015-2016 season and characterized these objects. The data
have improved the distribution of orbital periods, the relation between the
orbital period and the variation of superhumps, the relation between period
variations and the rebrightening type in WZ Sge-type objects. Coupled with new
measurements of mass ratios using growing stages of superhumps, we now have a
clearer and statistically greatly improved evolutionary path near the terminal
stage of evolution of cataclysmic variables. Three objects (V452 Cas, KK Tel,
ASASSN-15cl) appear to have slowly growing superhumps, which is proposed to
reflect the slow growth of the 3:1 resonance near the stability border.
ASASSN-15sl, ASASSN-15ux, SDSS J074859.55+312512.6 and CRTS J200331.3-284941
are newly identified eclipsing SU UMa-type (or WZ Sge-type) dwarf novae.
ASASSN-15cy has a short (~0.050 d) superhump period and appears to belong to EI
Psc-type objects with compact secondaries having an evolved core. ASASSN-15gn,
ASASSN-15hn, ASASSN-15kh and ASASSN-16bu are candidate period bouncers with
superhump periods longer than 0.06 d. We have newly obtained superhump periods
for 79 objects and 13 orbital periods, including periods from early superhumps.
In order that the future observations will be more astrophysically beneficial
and rewarding to observers, we propose guidelines how to organize observations
of various superoutbursts.Comment: 123 pages, 162 figures, 119 tables, accepted for publication in PASJ
(including supplementary information
Antifungal Susceptibilities of Cryptococcus neoformans
Susceptibility profiles of medically important fungi in less-developed countries remain uncharacterized. We measured the MICs of amphotericin B, 5-flucytosine, fluconazole, itraconazole, and ketoconazole for Cryptococcus neoformans clinical isolates from Thailand, Malawi, and the United States and found no evidence of resistance or MIC profile differences among the countries
Human Genome-Wide RNAi Screen Identifies an Essential Role for Inositol Pyrophosphates in Type-I Interferon Response
The pattern recognition receptor RIG-I is critical for Type-I interferon production. However, the global regulation of RIG-I signaling is only partially understood. Using a human genome-wide RNAi-screen, we identified 226 novel regulatory proteins of RIG-I mediated interferon-β production. Furthermore, the screen identified a metabolic pathway that synthesizes the inositol pyrophosphate 1-IP7 as a previously unrecognized positive regulator of interferon production. Detailed genetic and biochemical experiments demonstrated that the kinase activities of IPPK, PPIP5K1 and PPIP5K2 (which convert IP5 to1-IP7) were critical for both interferon induction, and the control of cellular infection by Sendai and influenza A viruses. Conversely, ectopically expressed inositol pyrophosphate-hydrolases DIPPs attenuated interferon transcription. Mechanistic experiments in intact cells revealed that the expression of IPPK, PPIP5K1 and PPIP5K2 was needed for the phosphorylation and activation of IRF3, a transcription factor for interferon. The addition of purified individual inositol pyrophosphates to a cell free reconstituted RIG-I signaling assay further identified 1-IP7 as an essential component required for IRF3 activation. The inositol pyrophosphate may act by β-phosphoryl transfer, since its action was not recapitulated by a synthetic phosphonoacetate analogue of 1-IP7. This study thus identified several novel regulators of RIG-I, and a new role for inositol pyrophosphates in augmenting innate immune responses to viral infection that may have therapeutic applications
Performance of the LHCb vertex locator
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c
- …