22 research outputs found

    Extreme Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and Brunei

    No full text
    The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km(2) of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.CLASlite is made possible by the Gordon and Betty Moore Foundation, the John D. and Catherine T. MacArthur Foundation, and the Grantham Foundation for the Protection of the Environment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports

    Get PDF
    Background: The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies. Methods: Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests. Results: The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http:// www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion: We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.Molecular and Cellular Biolog

    Toward Transatlantic Convergence in Financial Regulation

    Full text link

    Deforestation and degradation in Papua New Guinea: a response to Filer and colleagues, 2009

    No full text
    Papua New Guinea’s (PNG) forests are a vital natural resource for the human population that they sustain, the wide biological diversity they contain, the ecological services they provide and their global role in maintaining climatic processes (Hunt, 2006; Bryan et al., in press). The population of PNG is expanding by approximately 2–3% annually, requiring forest clearance for subsistence cultivation, and over recent decades the log export industry has expanded greatly. Though these and other drivers of forest change are well known, there has been considerable debate regarding the extent and rate at which forests are being degraded or converted to other forms of land use. This debate has been fuelled by an absence of recent accurate data, and coloured by the politics associated with industrial rainforest exploitation and more recently, carbon-related REDD projects1. To address this deficiency we undertook a 6-year research project that involved mapping the entire PNG forest estate at high resolution, and compared this with maps from the early 1970s. Our results provide detailed, accurate measurement of the area and condition of forest in PNG, how much forest has been cleared or degraded over the past three decades, and what caused these changes. Our research was initially published as a detailed report (Shearman et al., 2008) that has also been published, in abbreviated form, in the peerreviewed journal Biotropica (Shearman et al., 2009). Our most controversial finding was that overall rates of forest clearance and degradation were much higher than those estimated in the early 1990s (Hammermaster and Saunders, 1995; McAlpine and Quigley, 1998; McAlpine and Freyne, 2001). This is partly because the rates are accelerating but it is mostly due to technical differences in measuring forest cover and forest cover change

    Kinetic energy generation in heat engines and heat pumps the relationship between surface pressure temperature and circulation cell size

    No full text
    The pattern and size of the Earth’s atmospheric circulation cells determine regional climates and challenge theorists. Here the authors present a theoretical framework that relates the size of meridional cells to the kinetic energy generation within them. Circulation cells are considered as heat engines (or heat pumps) driven by surface gradients of pressure and temperature. This approach allows an analytical assessment of kinetic energy generation in the meridional cells from the known values of surface pressure and temperature differences across the cell, Δps and ΔTs. Two major patterns emerge. First, the authors find that kinetic energy generation in the upper and lower atmosphere respond in contrasting ways to surface temperature: with growing ΔTs, kinetic energy generation increases in the upper atmosphere but declines in the lower. A requirement that kinetic energy generation must be positive in the lower atmosphere can limit the poleward cell extension of the Hadley cells via a relationship between Δps and ΔTs. The limited extent of the Hadley cells necessitates the appearance of heat pumps (Ferrel cells) – circulation cells with negative work output. These cells consume the positive work output of the Hadley cells (heat engines) and can in theory drive the global efficiency of an axisymmetric atmospheric circulation down to zero. Second, the authors show that, within a cell, kinetic energy generation is largely determined by ΔTs in the upper atmosphere, and by Δps in the lower. By absolute magnitude, the temperature contribution is about 10 times larger. However, since the heat pumps act as sinks of kinetic energy in the upper atmosphere, the net kinetic energy generation in the upper atmosphere, as well as the net impact of surface temperature, is reduced. The authors use NCAR/NCEP and MERRA data to verify the obtained theoretical relationships. These observations confirm considerable cancellation between the temperature-related sources and sinks of kinetic energy in the upper atmosphere. Both the theoretical approach and observations highlight a major contribution from surface pressure gradients, rather than temperature, in the kinetic energy budget of meridional circulation. The findings urge increased attention to surface pressure gradients as determinants of the meridional circulation patterns

    Extreme Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and Brunei

    Get PDF
    <div><p>The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km<sup>2</sup> of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.</p></div
    corecore