75 research outputs found

    pH Dependent Reversible Formation of a Binuclear Ni\u3csub\u3e2\u3c/sub\u3e Metal-Center within a Peptide Scaffold

    Get PDF
    A disulfide-bridged peptide containing two Ni2+ binding sites based on the nickel superoxide dismutase protein, {Ni2(SODmds)} has been prepared. At physiological pH (7.4), it was found that the metal sites are mononuclear with a square planar NOS2 coordination environment with the two sulfur-based ligands derived from cysteinate residues, the nitrogen ligand derived from the amide backbone, and a water ligand. Furthermore, S K-edge X-ray absorption spectroscopy indicated that the two cysteinate sulfur atoms ligated to nickel are each protonated. Elevation of the pH to 9.6 results in the deprotonation of the cysteinate sulfur atoms, and yields a binuclear, cysteinate bridged Ni22+ center with each nickel contained in a distorted square planar geometry. At both pH = 7.4 and 9.6, the nickel sites are moderately air sensitive, yielding intractable oxidation products. However, at pH = 9.6, {Ni2(SODmds)} reacts with O2 at an ~3.5-fold faster rate than at pH = 7.4. Electronic structure calculations indicate that the reduced reactivity at pH = 7.4 is a result of a reduction in S(3p) character and deactivation of the nucleophilic frontier molecular orbitals upon cysteinate sulfur protonation

    Thioester Synthesis By a Designed Nickel Enzyme Models Prebiotic Energy Conversion

    Get PDF
    The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetylCoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation

    Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex

    Get PDF
    A mononuclear nonheme cobalt(III) iodosylbenzene complex, [CoIII(TQA)(OIPh)(OH)]2+ (1), is synthesized and characterized structurally and spectroscopically. While 1 is a sluggish oxidant in oxidation reactions, it becomes a competent oxidant in oxygen atom transfer reactions, such as olefin epoxidation, in the presence of a small amount of proton. More interestingly, 1 shows a nucleophilic reactivity in aldehyde deformylation reaction, demonstrating that 1 has an amphoteric reactivity. Another interesting observation is that 1 can be used as an oxygen atom donor in the generation of high-valent metal-oxo complexes. To our knowledge, we present the first crystal structure of a CoIII iodosylbenzene complex and the unprecedented reactivity of metal-iodosylarene adduct

    Scaffold-Based [Fe]-Hydrogenase Model: H\u3csub\u3e2\u3c/sub\u3e Activation Initiates Fe(0)-Hydride Extrusion and Non-Biomimetic Hydride Transfer

    Get PDF
    We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C-H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe-C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H2 activation across the Fe(ii) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe-carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H2/hydride-induced loss of the organometallic acyl unit (i.e. pyCH2-CO → pyCH3+CO). The known reduced hydride species [HFe(CO)4]– and [HFe3(CO)11]– have been observed as products by 1H/2H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO)4]. The former species (i.e. [HFe(CO)4]–) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([TolIm](BArF) = fluorinated imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase

    A Biochemical Nickel(I) State Supports Nucleophilic Alkyl Addition: A Roadmap for Methyl Reactivity in Acetyl Coenzyme A Synthase

    Get PDF
    Nickel-containing enzymes such as methyl coenzyme M reductase (MCR) and carbon monoxide dehydrogenase/acetyl coenzyme A synthase (CODH/ACS) play a critical role in global energy conversion reactions, with significant contributions to carbon-centered processes. These enzymes are implied to cycle through a series of nickel-based organometallic intermediates during catalysis, though identification of these intermediates remains challenging. In this work, we have developed and characterized a nickel-containing metalloprotein that models the methyl-bound organometallic intermediates proposed in the native enzymes. Using a nickel(I)-substituted azurin mutant, we demonstrate that alkyl binding occurs via nucleophilic addition of methyl iodide as a methyl donor. The paramagnetic NiIII-CH3 species initially generated can be rapidly reduced to a high-spin NiII-CH3 species in the presence of exogenous reducing agent, following a reaction sequence analogous to that proposed for ACS. These two distinct bioorganometallic species have been characterized by optical, EPR, XAS, and MCD spectroscopy, and the overall mechanism describing methyl reactivity with nickel azurin has been quantitatively modeled using global kinetic simulations. A comparison between the nickel azurin protein system and existing ACS model compounds is presented. NiIII-CH3 Az is only the second example of two-electron addition of methyl iodide to a NiI center to give an isolable species and the first to be formed in a biologically relevant system. These results highlight the divergent reactivity of nickel across the two intermediates, with implications for likely reaction mechanisms and catalytically relevant states in the native ACS enzyme

    Phenol Nitration Induced by an {Fe(NO)\u3csub\u3e2\u3c/sub\u3e}\u3csup\u3e10\u3c/sup\u3e Dinitrosyl Iron Complex

    Get PDF
    Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although other physiological roles of DNICs have been postulated, their chemical functionality outside of NO transfer has not been demonstrated thus far. Here we report the unprecedented dioxygen reactivity of a N-bound {Fe(NO)2}10 DNIC, [Fe(TMEDA)(NO)2] (1). In the presence of O2, 1 becomes a nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below −80 °C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at increased temperature or under illumination. These results suggest that DNICs could have multiple physiological or deleterious roles, including that of cellular nitrating agents

    Reduction of CO\u3csub\u3e2\u3c/sub\u3e By a Masked Two-Coordinate Cobalt(I) Complex and Characterization of a Proposed Oxodicobalt(II) Intermediate

    Get PDF
    Fixation and chemical reduction of CO2 are important for utilization of this abundant resource, and understanding the detailed mechanism of C-O cleavage is needed for rational development of CO2 reduction methods. Here, we describe a detailed analysis of the mechanism of the reaction of a masked two-coordinate cobalt(i) complex, LtBuCo (where LtBu = 2,2,6,6-tetramethyl-3,5-bis[(2,6-diisopropylphenyl)imino]hept-4-yl), with CO2, which yields two products of C-O cleavage, the cobalt(i) monocarbonyl complex LtBuCo(CO) and the dicobalt(ii) carbonate complex (LtBuCo)2(μ-CO3). Kinetic studies and computations show that the κN,η6-arene isomer of LtBuCo rearranges to the κ2N,N′ binding mode prior to binding of CO2, which contrasts with the mechanism of binding of other substrates to LtBuCo. Density functional theory (DFT) studies show that the only low-energy pathways for cleavage of CO2 proceed through bimetallic mechanisms, and DFT and highly correlated domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) calculations reveal the cooperative effects of the two metal centers during facile C-O bond rupture. A plausible intermediate in the reaction of CO2 with LtBuCo is the oxodicobalt(II) complex LtBuCoOCoLtBu, which has been independently synthesized through the reaction of LtBuCo with N2O. The rapid reaction of LtBuCoOCoLtBu with CO2 to form the carbonate product indicates that the oxo species is kinetically competent to be an intermediate during CO2 cleavage by LtBuCo. LtBuCoOCoLtBu is a novel example of a thoroughly characterized molecular cobalt-oxo complex where the cobalt ions are clearly in the +2 oxidation state. Its nucleophilic reactivity is a consequence of high charge localization on the μ-oxo ligand between two antiferromagnetically coupled high-spin cobalt(ii) centers, as characterized by DFT and multireference complete active space self-consistent field (CASSCF) calculations

    Chalcogen Impact on Covalency within Molecular [Cu\u3csub\u3e3\u3c/sub\u3e(μ\u3csub\u3e3\u3c/sub\u3e-E)]\u3csup\u3e3+\u3c/sup\u3e Clusters (E = O, S, Se): A Synthetic, Spectroscopic, and Computational Study

    Get PDF
    Reaction of the tricopper(I)-dinitrogen tris(β-diketiminate) cyclophane, Cu3(N2)L, with O-atom-transfer reagents or elemental Se affords the oxido-bridged tricopper complex Cu3(μ3-O)L (2) or the corresponding Cu3(μ3-Se)L (4), respectively. For 2 and 4, incorporation of the bridging chalcogen donor was supported by electrospray ionization mass spectrometry and K-edge X-ray absorption spectroscopy (XAS) data. Cu L2,3-edge X-ray absorption data quantify 49.5% Cu 3d character in the lowest unoccupied molecular orbital of 2, with Cu 3d participation decreasing to 33.0% in 4 and 40.8% in the related sulfide cluster Cu3(μ3-S)L (3). Multiedge XAS and UV/visible/near-IR spectra are employed to benchmark density functional theory calculations, which describe the copper-chalcogen interactions as highly covalent across the series of [Cu3(μ-E)]3+ clusters. This result highlights that the metal-ligand covalency is not reserved for more formally oxidized metal centers (i.e., CuIII + O2- vs CuII + O-) but rather is a significant contributor even at more typical ligand-field cases (i.e., Cu3II/II/I + E2-). This bonding is reminiscent of that observed in p-block elements rather than in early-transition-metal complexes

    Group II Introns Break New Boundaries: Presence in a Bilaterian's Genome

    Get PDF
    Group II introns are ribozymes, removing themselves from their primary transcripts, as well as mobile genetic elements, transposing via an RNA intermediate, and are thought to be the ancestors of spliceosomal introns. Although common in bacteria and most eukaryotic organelles, they have never been reported in any bilaterian animal genome, organellar or nuclear. Here we report the first group II intron found in the mitochondrial genome of a bilaterian worm. This location is especially surprising, since animal mitochondrial genomes are generally distinct from those of plants, fungi, and protists by being small and compact, and so are viewed as being highly streamlined, perhaps as a result of strong selective pressures for fast replication while establishing germ plasm during early development. This intron is found in the mtDNA of an annelid worm, (an undescribed species of Nephtys), where the complete sequence revealed a 1819 bp group II intron inside the cox1 gene. We infer that this intron is the result of a recent horizontal gene transfer event from a viral or bacterial vector into the mitochondrial genome of Nephtys sp. Our findings hold implications for understanding mechanisms, constraints, and selective pressures that account for patterns of animal mitochondrial genome evolutio

    Sustainable Polysulfides for Oil Spill Remediation: Repurposing Industrial Waste for Environmental Benefit

    Get PDF
    © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Crude oil and hydrocarbon fuel spills are a perennial threat to aquatic environments. Inexpensive and sustainable sorbents are needed to mitigate the ecological harm of this pollution. To address this need, this study features a low‐density polysulfide polymer that is prepared by the direct reaction of sulfur and used cooking oils. Because both sulfur and cooking oils are hydrophobic, the polymer has an affinity for hydrocarbons such as crude oil and diesel fuel and can rapidly remove them from seawater. Through simple mechanical compression, the oil can be recovered and the polymer can be reused in oil spill remediation. The polysulfide is unique because it is prepared entirely from repurposed waste: sulfur is a by‐product of the petroleum industry and used cooking oil can be used as a comonomer. In this way, sulfur waste from the oil industry is used to make an effective sorbent for combatting pollution from that same sector
    corecore