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Amphoteric Reactivity Hot Paper

Structure and Unprecedented Reactivity of a Mononuclear Nonheme
Cobalt(III) Iodosylbenzene Complex
Jindou Yang+, Mi Sook Seo+, Kyung Ha Kim, Yong-Min Lee, Shunichi Fukuzumi,*
Jason Shearer,* and Wonwoo Nam*

Abstract: A mononuclear nonheme cobalt(III) iodosylben-
zene complex, [CoIII(TQA)(OIPh)(OH)]2+ (1), is synthesized
and characterized structurally and spectroscopically. While 1 is
a sluggish oxidant in oxidation reactions, it becomes a com-
petent oxidant in oxygen atom transfer reactions, such as olefin
epoxidation, in the presence of a small amount of proton. More
interestingly, 1 shows a nucleophilic reactivity in aldehyde
deformylation reaction, demonstrating that 1 has an ampho-
teric reactivity. Another interesting observation is that 1 can be
used as an oxygen atom donor in the generation of high-valent
metal-oxo complexes. To our knowledge, we present the first
crystal structure of a CoIII iodosylbenzene complex and the
unprecedented reactivity of metal-iodosylarene adduct.

High-valent metal-oxo species and their precursors, such as
metal-hydroperoxo, -peroxo, and -superoxo complexes, have
been synthesized, characterized spectroscopically and/or
structurally, and investigated in reactivity studies as the
chemical models of biologically important metal-oxygen
intermediates in the dioxygen activation and oxidation
reactions by metalloenzymes.[1–4] Regarding reactivities of
the metal–oxygen intermediates, metal-oxo complexes are
electrophilic oxidants in biological and abiological oxidation
reactions,[2–4] whereas metal-peroxo complexes are nucleo-
philes that effect the deformylation of aldehydes.[5,6] Recently,
it has been demonstrated that metal-hydroperoxo complexes
are active oxidants in both electrophilic and nucleophilic
reactions with an amphoteric character.[7] In the case of metal-
superoxo complexes, the electrophilic character of the metal-

superoxo intermediates has been well demonstrated in
biological and abiological oxidation reactions.[8, 9]

Iodosylarenes (ArIO), including iodosylbenzene (PhIO),
are versatile oxidants frequently used in the catalytic oxida-
tion of organic substrates as well as in the generation of metal-
oxo intermediates.[10] Metal-iodosylarene adducts have been
considered as potent oxidants in oxidation reactions as well as
the precursors of metal-oxo species,[11] and some of the metal-
ArIO adducts have been structurally characterized
recently.[12] Their electrophilic reactivities have also been
demonstrated in oxygen atom transfer (OAT) and C�H
activation reactions.[11, 12] Very recently, Anderson and co-
workers reported the crystal structures of CoII-iodosylarene
and CoII-iodosylarene adducts.[13] However, to our knowl-
edge, there is no report on the structure and chemical
reactivity of CoIII-iodosylbenzene species. Herein, we report
for the first time the synthesis and structural and spectro-
scopic characterization of a CoIII-iodosylbenzene complex,
[CoIII(TQA)(OIPh)(OH)]2+ (1, TQA = tris(2-quinolylme-
thyl)amine; Scheme 1). We also report the reactivity of 1 in
OAT, C�H activation, and aldehyde deformylation reactions
in the presence of a small amount of acid (Scheme 1). The use
of 1 as a terminal oxidant in the synthesis of high-valent
metal-oxo complexes is also demonstrated (Scheme 1).

The starting cobalt complex, [CoII(TQA)(CF3SO3)-
(CH3CN)]+ (2), was synthesized and structurally and spec-
troscopically characterized (see Supporting Information:
Experimental Section, Tables S1 and S2, and Figures S1 and
S2). When 2 was treated with 5 equivalents of PhIO in

Scheme 1. [CoIII(TQA)(OH)(OIPh)]2+ (1) and its reactivities in olefin
epoxidation, C�H activation, aldehyde deformylation, and intermolecu-
lar OAT reactions in the presence of HOTf. Co light blue, O red, I gold,
N dark blue, C gray.
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CH3CN at �40 8C, an immediate UV/Vis spectral change was
observed (blue spectrum in Figure 1a), followed by the
relatively slow formation of a green species (red spectrum
in Figure 1a), denoted as 1. It is likely that the fast UV/Vis
spectral change in the first step is due to the formation of
a CoIII(OH) species, as proposed in the reaction of a MnIII

complex and PhIO,[12e] and the second step is an exchange of
a cis-binding ligand (e.g., an anionic ligand, CF3SO3

�) with
PhIO to generate 1. Complex 1 is highly stable in CH3CN at
�40 8C (Figure S3a), allowing us to characterize it spectro-
scopically and crystallize it for X-ray crystal structure.

Compound 1 exhibited an electronic absorption band at
645 nm (e = 220m�1 cm�1) with a shoulder at 550 nm (e =

200m�1 cm�1; Figure 1a). The X-band electron paramagnetic
resonance (EPR) spectrum of 1 is silent, indicating that
1 contains a diamagnetic Co3+ ion (Figure S3b); this is
supported by Evans� nuclear magnetic resonance (NMR)
method measurement demonstrating that 1 is indeed dia-

magnetic (S = 0) (see Supporting Information: Experimental
Section). The cold-spray ionization time-of-flight mass (CSI-
MS) spectrum of 1 showed mass peaks at m/z 368.1 and 885.1
corresponding to [CoIII(TQA)(OIPh)(OH)]2+ and [CoIII-
(TQA)(OIPh)(OH)(OTf)]+ (1-16O), respectively (Figure 1 b;
also see Figure S4). When 1 was generated with PhI18O, mass
peaks corresponding to [CoIII(TQA)(18OIPh)(OH)]2+ and
[CoIII(TQA)(18OIPh)(16OH)(OTf)]2+ (1-18O) appeared at m/
z 369.1 and 887.1, respectively (Figure 1b, right panel in inset;
also see Figure S4). Further, upon addition of H2

18O to 1-18O,
the mass peaks at m/z 369.1 and 887.1 further shifted to 370.1
and 889.1 corresponding to [CoIII(TQA)(18OIPh)(18OH)]2+

and [CoIII(TQA)(18OIPh)(18OH)(OTf)]+, respectively (Fig-
ure S4), resulting from the exchange of the hydroxide ligand
(16OH�) with H2

18O. The resonance Raman (rRaman) spec-
trum of 1, recorded upon 405 nm excitation in a frozen
CH3CN:CF3CH2OH (v :v = 3:1) solution, displayed an iso-
topically sensitive band at 671 cm�1, which shifted to 634 cm�1

upon 18O-substitution (Figure 1c). The observed isotope shift
of �37 cm�1 is in good agreement with the calculated value
for a diatomic I�O bond oscillator (�34 cm�1). The band at
671 cm�1 is comparable to the I–O stretching bands of metal-
iodosylbenzene complexes.[11a,d, 12c,e] A week isotope sensitive
band at 496 cm�1, which was shifted to 484 cm�1 upon 18O
substitution, was assigned as a Co-OIPh stretching vibra-
tion.[7b, 14]

Co K-edge X-ray absorption spectroscopic studies were
undertaken on frozen CH3CN solutions of 1 and 2 (Figure 2;
Table S3). A blue-shift in the edge position of 1 (7720.8(2) eV)
versus 2 (7119.3(2) eV) was observed, consistent with a CoIII

oxidation state for 1. Weak pre-edge features corresponding
to nominal Co(1s!3d) transitions were observed for 2
(7709.1(1) eV) and 1 (7710.4(1) eV), consistent with six-

Figure 1. a) UV/Vis spectral changes in the reaction of 2 (1.0 mm,
black) with PhIO (5.0 mm) in CH3CN at �40 8C. b) CSI-MS spectrum
of 1. The peaks at m/z 368.1 and 885.1 correspond to 1-16O. Peaks
with an asterisk are from polymeric iodosylbenzene. Insets show
observed isotope distribution patterns for 1-16O (red) and 1-18O
(black). c) rRaman spectra of 1-16O (black line) and 1-18O (red line)
upon excitation at 405 nm in frozen CH3CN. Blue line shows the
difference spectrum of 1-16O and 1-18O.

Figure 2. a) Co K-edge XANES of 1 (red) and 2 (black). b) Magnitude
FT k3 EXAFS and k3 EXAFS (inset) of 1. The black spectra depict the
experimental data and the red spectra depict the best fit to the data.
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coordinate cobalt centers for both 1 and 2. The extended X-
ray absorption fine structure (EXAFS) region of 1 was
modeled as six-coordinate cobalt with two short Co�O bonds
(1.87 �) and four Co�N bonds (2.00 �). Pathways for an
outer sphere Co···I interaction (3.66 �) and a Co-O-I multiple
scattering pathway were also required to model the EXAFS
data. Taken together, these data indicate that six-coordinate
1 possesses a PhIO and an O(H) ligand to CoIII (see below).

Crystals suitable for X-ray diffraction (XRD) were
obtained by diffusing diethyl ether slowly into a CH3CN
solution of 1 at �40 8C (See Supporting Information for
CCDC numbers and Tables S1 and S2 for crystallographic
data of 1). The ORTEP structure of 1 reveals a mononuclear
end-on cobalt(III)-iodosylbenzene complex in a distorted
octahedral geometry (Figure 3). The Co�OIPh bond length is
1.8997(2) �, which is longer than the Co�OH distance
(1.8759(2) �). The O�I bond (1.9307(1) �) is comparable to
those of other metal-iodosylbenzene adducts, such as [MnIII-
(L)(OIPh)(OH)]2+ (1.929(5) �)[12e] and [FeIII(L)(OIPh)]2+

(1.920(3) �),[12b] but slightly shorter than that of MnIV(L)-
(OIAr)2 (1.954 and 1.984 �)[12a] and slightly longer than that
of [CoII(L)(OIPh)]+ (1.878(6) �).[13]

We then investigated the reactivity of 1 in OAT reactions.
Upon the addition of PPh3 to a solution of 1 at �40 8C, the
absorption band at 645 nm corresponding to 1 disappeared
within approximately 500 s (Figure S5); the organic product,
O=PPh3 (93 % yield) and the CoIII product were analyzed
spectroscopically (Figure S6). Further reactivity studies of
1 were performed with olefins. First, addition of styrene to
1 resulted in no spectral change even at 25 8C (Figure S7a).
Interestingly, addition of 1.2 equivalents of triflic acid (HOTf)
to the solution of 1 containing styrene at 25 8C resulted in the
decrease of the absorption band at 645 nm due to 1,
accompanied by the increase of the absorption band at
550 nm due to [CoIII(TQA)(OH)]2+ (Figures S7b and S8). The
organic product(s) was also analyzed by 1H NMR spectros-
copy and GC-MS, showing the formation of phenylacetalde-
hyde (92 % yield) (Figures S9–S11). In kinetic study, the
reaction of 1 and styrene obeyed the first-order kinetics under
the pseudo-first-order conditions (Figure S7b), yielding

a second-order rate constant (k2) of 1.9 � 10�2
m
�1 s�1 at 25 8C

(Figure S7c). Similarly, k2 values of para-substituted styrene
derivatives were determined (Table S4 and Figure S12). A
plot of the logarithm of the k2 values versus the one-electron
oxidation potentials of substrates afforded a slope of �5.1
(Figure S13), indicating the electrophilic character of 1.

The reactivity of 1 was also investigated in the C�H bond
activation reactions with the C�H bond dissociation energy
(BDE) values of hydrocarbons in the range of 75.5–81 kcal
mol�1, such as triphenylmethane (TPM, 81 kcal mol�1), fluo-
rine (80 kcal mol�1), 1,4-cyclohexadiene (CHD, 78 kcal
mol�1), 9,10-dihydroanthracene (DHA, 77 kcal mol�1), and
xanthene (75.5 kcalmol�1).[15] Addition of DHA to a solution
of 1 resulted in the disappearance of the intermediate with
a first-order decay profile, and a second-order rate constant of
4.9 � 10�2

m
�1 s�1 at 25 8C with the kinetic isotope effect (KIE)

value of 2.2(3) was determined in the hydroxylation of DHA-
h4/d4 (Figure S14). Product analysis for the reaction solution
of 1 and DHA revealed the formation of anthracene (95%
yield) as a sole organic product and [CoIII(TQA)(OH)]2+ as
the cobalt-containing decay product of 1 (Figure S15). In
addition, the second-order rate constants with other sub-
strates, such as xanthene, CHD, fluorene, and, TPM, were also
determined (Table S5 and Figure S16), showing the decrease
of the k2 values with the increase of the BDEs of substrates
C�H bonds (Figure S17). These results suggest that a hydro-
gen atom abstraction from the substrates C�H bond by 1 is
the rate-determining step, as frequently observed in metal-
oxo chemistry.[2,3] It should be noted that the reactivity of 1 in
HAT reactions did not change in the presence of excess PhI,
indicating that 1 is the active oxidant.

Interestingly, 1 is capable of participating in aldehyde
deformylation reactions. Upon the addition of 2-phenylpro-
pionaldehyde (2-PPA) to 1 under an Ar atmosphere,
1 decayed with a first-order kinetics profile, and a second-
order rate constant, k2(H), of 4.2 � 10�2

m
�1 s�1 at 25 8C was

obtained (Figure S18). 1 reacted with deuterated a-[D]-2-
PPA under the identical conditions, and a second-order rate
constant, k2(D), was determined to be 5.8 � 10�2

m
�1 s�1 at

25 8C, giving an inverse KIE ratio of 0.72 (Figure S18b).
Product analysis of the reaction solution revealed the
formation of acetophenone as a deformylated product
(98 % yield), as frequently observed in the nucleophilic
oxidative reactions by metal-peroxo and -hydroperoxo com-
plexes.[5–7]

We also employed 1 as a terminal oxidant to generate
high-valent metal-oxo species (Scheme 2, reaction b), as
PhIO has been frequently used as an artificial oxidant in
such reactions (Scheme 2, reaction a).[2c,e, 3a,e, 10] Addition of
[Fe(TMC)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraaza-
cyclotetradecane) to 1 at 25 8C afforded UV/Vis absorption
spectral changes with isosbestic points at 600 and 700 nm, in
which the absorption band at 645 nm due to 1 decreased with
the increase of the characteristic absorption band of [FeIV-
(O)(TMC)]2+ at 820 nm (Figure 4; also see Figure S19).[16] To
our knowledge, the present study reports the first example of
using a metal-iodosylbenzene adduct as a terminal oxidant for
the generation of high-valent metal-oxo species.

Figure 3. ORTEP diagram of 1 with thermal ellipsoids set at 50 %
probability. Hydrogen atoms are omitted for clarity except for the
hydroxo hydrogen atom (C gray; H cyan; N blue; O red; I green;
Co violet).
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In conclusion, we have reported for the first time the X-
ray crystal structure of a mononuclear nonheme CoIII-OIPh
adduct, [CoIII(TQA)(OIPh)(OH)]2+, which exhibits an
amphoteric reactivity in electrophilic and nucleophilic reac-
tions in the presence of a small amount of proton. We have
also shown that metal iodosylarene complexes can be used as
a terminal oxidant for the generation of metal-oxo species. In
future studies, we will focus on elucidating the detailed
mechanisms of metal-iodosylarene species in oxidation reac-
tions as well as in the OAT reaction for the formation of
metal-oxo species. We are currently investigating the effects
of protons and metal ions on the reactivity of metal-
iodosylarene species.[17]
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