5 research outputs found

    Fecal Methylmercury Correlates With Gut Microbiota Taxa in Pacific Walruses (Odobenus rosmarus divergens)

    Get PDF
    ObjectivesMethylmercury metabolism was investigated in Pacific walruses (Odobenus rosmarus divergens) from St. Lawrence Island, Alaska, United States.MethodsTotal mercury and methylmercury concentrations were measured in fecal samples and paired colon samples (n = 16 walruses). Gut microbiota composition and diversity were determined using 16S rRNA gene sequencing. Associations between fecal and colon mercury and the 24 most prevalent gut microbiota taxa were investigated using linear models.ResultsIn fecal samples, the median values for total mercury, methylmercury, and %methylmercury (of total mercury) were 200 ng/g, 4.7 ng/g, and 2.5%, respectively, while in colon samples, the median values for the same parameters were 28 ng/g, 7.8 ng/g, and 26%, respectively. In fecal samples, methylmercury was negatively correlated with one Bacteroides genus, while members of the Oscillospirales order were positively correlated with both methylmercury and %methylmercury (of total mercury). In colon samples, %methylmercury (of total mercury) was negatively correlated with members of two genera, Romboutsia and Paeniclostridium.ConclusionsMedian %methylmercury (of total mercury) was 10 times higher in the colon compared to the fecal samples, suggesting that methylmercury was able to pass through the colon into systemic circulation. Fecal total mercury and/or methylmercury concentrations in walruses were comparable to some human studies despite differences in seafood consumption rates, suggesting that walruses excreted less mercury. There are no members (at this time) of the Oscillospirales order which are known to contain the genes to methylate mercury, suggesting the source of methylmercury in the gut was from diet and not in vivo methylation

    Space use of Pacific harbor seals (Phoca vitulina richardii) from two haulout locations along the Oregon coast.

    No full text
    BackgroundThere are approximately 10,000-12,000 Pacific harbor seals (Phoca vitulina richardii) inhabiting the Oregon coast, and unlike other species of pinnipeds in this region, are reliably present year-round. Despite this, and drastic rebounds in population since the enactment of the Marine Mammal Protection Act, limited data is available for the present period regarding their space use at sea, and within estuarine, riverine, or bay areas within the state.ObjectiveTo examine site-based differences in space use for 24 adult Pacific harbor seals captured and outfitted with satellite transmitters at two predominant haulout sites on the Oregon Coast, USA.DesignWe captured 24 adult harbor seals from two haulout sites on the Central Oregon coast between September 2014-16 and fitted them with external Wildlife Computers SPOT5 satellite transmitters to track movement. Using state-space modeled locations derived from satellite telemetry data, we evaluated spatial behavior of these animals using a correlated random walk model via R package crawl. Kernel density estimation was subsequently used to calculate home range and core area for each animal. Percent use of open ocean habitat versus use of estuaries, rivers and bays was quantified, as was an initial examination of presence within five newly-established marine reserves in Oregon. Examination of haulout site-related differences in spatial behavior were examined for seals captured in Netarts and Alsea Bays, Oregon and haul out behavior related to time of day, season, and tidal level was also investigated.ResultsThe average individual home range for seals was 364.47 ± 382.87 km2 with seals captured in Alsea bay demonstrating a significantly higher home range area than those captured in Netarts Bay. Alsea bay seals also tended to range farther from shore than Netarts Bay animals. The average calculated core area for seals encompassed on average 29.41 ± 29.23 km2 per animal, however the home range of one animal was so small, core area could not be calculated. Use of marine reserves was limited for animals in this study, representing less than 2% of locations with a majority occurring in Cape Perpetua Marine Reserve and North Marine Protected Area. Seals were more likely to haul out during low tides and periods of low light (dusk, night and dawn), and hauling out behavior increased in winter months.SignificanceThese findings demonstrate the first major documentation of space use of harbor seals in the state for nearly three decades, and lends itself to future comparison and formation of mechanistically-based hypotheses for behavior of a common marine mammal in the highly productive northern California Current System

    Harbour Seals: Population Structure, Status, and Threats in a Rapidly Changing Environment

    No full text
    The harbour seal (Phoca vitulina) is the world’s most widely distributed pinniped species ranging from temperate to Arctic regions (30–78.5° N in the Atlantic, 28–61.2° N in the Pacific), but no detailed overview of the species status exists. The aims of this review are to (i) provide current information on the genetic structure, population status, and threats; (ii) review potential consequences of a changing climate; and (iii) identify knowledge gaps to guide future research and monitoring. Although the species is globally abundant, wide differences exist across the species’ broad range. As climate warms, populations at the edges of the species’ distributional range are likely to be more affected. The primary climate-related drivers include: (i) changes in weather patterns, which can affect thermoregulation; (ii) decrease in availability of haul-out substrates; (iii) large-scale changes in prey availability and inter-specific competition; (iv) shifts in the range of pathogens; (v) increase in temperature favouring the biotransformation of contaminants; and (vi) increased exposure to pollutant from increased freshwater run-off. Multiple anthropogenic stressors may collectively impact some populations. Coordinated monitoring efforts across and within regions is needed. This would allow for a spatially explicit management approach including population-specific responses to known stressors

    Best practice recommendations for the use of external telemetry devices on pinnipeds

    Get PDF
    Pinnipeds spend large portions of their lives at sea, submerged, or hauled-out on land, often on remote of-shore islands. This fundamentally limits access by researchers to critical parts of pinniped life history and has spurred the development and implementation of a variety of externally attached telemetry devices (ETDs) to collect informa‑ tion about movement patterns, physiology and ecology of marine animals when they cannot be directly observed. ETDs are less invasive and easier to apply than implanted internal devices, making them more widely used. However, ETDs have limited retention times and their use may result in negative short- and long-term consequences includ‑ ing capture myopathy, impacts to energetics, behavior, and entanglement risk. We identify 15 best practice recom‑ mendations for the use of ETDs with pinnipeds that address experimental justifcation, animal capture, tag design, tag attachment, efects assessments, preparation, and reporting. Continued improvement of best practices is critical within the framework of the Three Rs (Reduction, Refnement, Replacement); these best practice recommendations provide current guidance to mitigate known potential negative outcomes for individuals and local populations. These recommendations were developed specifcally for pinnipeds; however, they may also be applicable to studies of other marine taxa. We conclude with four desired future directions for the use of ETDs in technology development, valida‑ tion studies, experimental designs and data sharing
    corecore