4,946 research outputs found

    Macropolyhedral boron-containing cluster chemistry. Ligand-induced two-electron variations of intercluster bonding intimacy. Structures of nineteen-vertex[(eta(5)-C5Me5) HIrB18H19(PMe2Ph)] and the related carbene complex [(eta(5)-C5Me5)HIrB18H19{C(NHMe)(2)}]

    Get PDF
    Addition of PMe2Ph to fused-cluster syn-[(η5-C5Me5)IrB18H20] 1 to give [(η5-C5Me5)HIrB18H19(PMe2Ph)] 3 entails a diminution in the degree of intimacy of the intercluster fusion, rather than retention of inter-subcluster binding intimacy and a nido → arachno conversion of the character of either of the subclusters. Reaction with MeNC gives [(η5-C5Me5)HIrB18H19{C(NHMe)2}] 4 which has a similar structure, but with the ligand now being the carbene {:C(NHMe)2}, resulting from a reductive assembly reaction involving two MeNC residues and the loss of a carbon atom

    Macropolyhedral boron-containing cluster chemistry: two-electron variations in intercluster bonding intimacy. Contrasting structures of 19-vertex [(eta(5)-C5Me5)HIrB18H19(PHPh2)] and [(eta(5) -C5Me5)IrB18H18(PH2Ph)]

    Get PDF
    Fused double-cluster [(5-C5Me5)IrB18H18(PH2Ph)]8, from syn-[(5-C5Me5)IrB18H20] 1 and PH2Ph, retains the three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(5-C5Me5)HIrB18H19(PHPh2)]6, from PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms via spontaneous dihydrogen loss from its precursor [(5-C5Me5)HIrB18H19(PH2Ph)]7, which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to 6

    Using gamma+jets Production to Calibrate the Standard Model Z(nunu)+jets Background to New Physics Processes at the LHC

    Full text link
    The irreducible background from Z(nunu)+jets, to beyond the Standard Model searches at the LHC, can be calibrated using gamma+jets data. The method utilises the fact that at high vector boson pT, the event kinematics are the same for the two processes and the cross sections differ mainly due to the boson-quark couplings. The method relies on a precise prediction from theory of the Z/gamma cross section ratio at high pT, which should be insensitive to effects from full event simulation. We study the Z/gamma ratio for final states involving 1, 2 and 3 hadronic jets, using both the leading-order parton shower Monte Carlo program Pythia8 and a leading-order matrix element program Gambos. This enables us both to understand the underlying parton dynamics in both processes, and to quantify the theoretical systematic uncertainties in the ratio predictions. Using a typical set of experimental cuts, we estimate the net theoretical uncertainty in the ratio to be of order 7%, when obtained from a Monte Carlo program using multiparton matrix-elements for the hard process. Uncertainties associated with full event simulation are found to be small. The results indicate that an overall accuracy of the method, excluding statistical errors, of order 10% should be possible.Comment: 22 pages, 14 figures; Accepted for publication by JHE

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    A Pilot Study on Cannabidiol (CBD) and Eccentric Exercise: Impact on Inflammation, Performance, and Pain

    Get PDF
    International Journal of Exercise Science 16(2): 109-117, 2023. Cannabidiol (CBD) is a non-psychoactive cannabinoid purported to reduce symptoms of discomfort. Individuals are now using CBD to treat symptoms of multiple sclerosis, seizures, and chronic pain. Animal models indicate that CBD may be effective at reducing inflammation post fatiguing exercise. However, little evidence is available to evaluate these findings in humans. Therefore, the purpose of this investigation was to evaluate the impact of two doses of CBD oil on inflammation (IL-6), performance, and pain after an eccentric loading protocol. Participants (n = 4) participated in three conditions (placebo, low dose, and high dose), in this randomized, counterbalanced design. Each condition took 72 hours to complete, with a 1-week washout period between conditions. At the beginning of each week, participants were subjected to a loading protocol of six sets of ten eccentric only repetitions in the single-arm bicep curl. Participants consumed capsules of either a placebo, low dose (2mg/kg) or high dose (10mg/kg) of CBD oil immediately following the session and continued every twelve hours for 48 hours. Venipunctures were taken before exercise and repeated at 24, 48, and 72 hours post exercise. Blood samples were centrifuged for 15 minutes in gel and lithium heparin vacutainers. Plasma was separated from cells and stored at -80° until analysis. Samples were analyzed using an immunometric assay for IL-6 (ELISA). Data were analyzed using a three (condition) by four (time) repeated measure ANOVA. There were no differences in inflammation between conditions (F(2,6) = 0.726, p = 0.522, np2 = 0.195) or across time (F(3,9) = 0.752, p = 0.548, np2 = 0.200), handgrip strength between conditions (F(2,6) = 0.542, p = 0.607, np2 = .153) or across time (F(3,9) = 2.235, p = .153, np2 = .427), or bicep curl strength between conditions (F(2,6) = 0.675, p = 0.554, np2 = .184) or across time (F(3,9) = 3.513, p = .150, np2 = .539). There were no differences in pain between conditions (F(2,6) = 0.495, p = 0.633, np2 = .142), but there was a difference across time (F(3,9) = 7.028, p = .010, np2 = .701). There were no significant interactions to note. Although there was no statistical significance between conditions (likely due to the low sample size), there was a visible increase in IL-6 48 (4.88 ± 6.53) and 72 hours (3.12 ± 4.26) post exercise in the placebo condition which was not observed in the low (48: 0.35 ± 2.22; 72: 1.34 ± 5.6) and high dose condition (48: 1.34 ± 1.34; 72: -0.79 ± 5.34). Future investigations should consider implementing eccentric resistance training across a larger portion of the body to improve ecological validity of the exercise. A larger sample would reduce risk of researchers committing a type II statistical error and give strength to detecting differences between conditions

    Space Launch System Booster Separation Supersonic Powered Testing with Surface and Off-Body Measurements

    Get PDF
    A wind tunnel test was run in the NASA Langley Unitary Plan Wind Tunnel simulating the separation of the two solid rocket boosters (SRB) from the core stage of the NASA Space Launch System (SLS). The test was run on a 0.9% scale model of the SLS Block 1B Cargo (27005) configuration and the SLS Block 1B Crew (28005) configuration at a Mach of 4.0. High pressure air was used to simulate plumes from the booster separation motors located at the nose and aft skirt of the two boosters. Force and moment data were taken on both SRBs and on the core stage. Schlieren still photos and video were recorded throughout testing. A set of points were acquired using Cross-correlation Doppler Global Velocimetry (CCDGV) readings to get 3 component velocity measurements between the core and the left-hand SRB. The CCDGV laser was utilized to record flow visualization in the same location, between the core and the left-hand SRB. Pressure Sensitive Paint data were taken on a separate set of runs. Computational Fluid Dynamics (CFD) runs were computed on a subset of the wind tunnel data points for comparison. A combination of the force/moment, CCDGV and Pressure Sensitive Paint (PSP) data (as well as schlieren images) at the CFD-specified test conditions will be used te the CFD simulations that will be used to build an SLS booster separation database flight conditions

    Solar Neutron Events of October-November 2003

    Full text link
    During the period when the Sun was intensely active on October-November 2003, two remarkable solar neutron events were observed by the ground-based neutron monitors. On October 28, 2003, in association with an X17.2 large flare, solar neutrons were detected with high statistical significance (6.4 sigma) by the neutron monitor at Tsumeb, Namibia. On November 4, 2003, in association with an X28 class flare, relativistic solar neutrons were observed by the neutron monitors at Haleakala in Hawaii and Mexico City, and by the solar neutron telescope at Mauna Kea in Hawaii simultaneously. Clear excesses were observed at the same time by these detectors, with the significance calculated as 7.5 sigma for Haleakala, and 5.2 sigma for Mexico City. The detector onboard the INTEGRAL satellite observed a high flux of hard X-rays and gamma-rays at the same time in these events. By using the time profiles of the gamma-ray lines, we can explain the time profile of the neutron monitor. It appears that neutrons were produced at the same time as the gamma-ray emission.Comment: 35 pages, 21 figures, accepted for publication in Ap

    A point process framework for modeling electrical stimulation of the auditory nerve

    Full text link
    Model-based studies of auditory nerve responses to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe auditory nerve spiking while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semi-analytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data and explain differences in auditory nerve responses to high and low pulse rate stimulation. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds.Comment: 1 title page, 27 manuscript pages, 14 figures, 1 table, 1 appendi
    corecore