5,848 research outputs found

    SNS Timing System

    Full text link
    This poster describes the timing system being designed for Spallation Neutron Source being built at Oak Ridge National lab

    Fairbanks Gang Assessment

    Get PDF
    The Justice Center at University of Alaska Anchorage partnered with the Fairbanks Gang Reduction and Intervention Network (GRAIN) to perform a thorough assessment of the gang problem in Fairbanks following the protocol outlined by the Office of Juvenile Justice and Delinquency Prevention (OJJDP)’s Comprehensive Gang Model. Law enforcement data show that there are at least 12 active gangs in the Fairbanks North Star Borough, with the percentage of crime reported to law enforcement attributable to gangs (2007-2009) varying from a low of 4.3% in 2007 to a high of 7.2% in 2008. The complete assessment, contained in this report, includes a review of community demographic data, law enforcement data, student and school data, and community perceptions data.Fairbanks Gang Reduction and Intervention Network Grant No. 2007-JV-FX-0331Index of Tables and Figures / Acknowledgements / Section I Fairbanks Gang Assessment: Executive Summary / Section II Fairbanks Gang Assessment: Community Demographic Data / Section III Fairbanks Gang Assessment: Law Enforcement Data / Section IV Fairbanks Gang Assessment: Student and School Data / Section V Fairbanks Gang Assessment: Community Perceptions Data / Section VI Fairbanks Gang Assessment: Community Resources Data / Section VII Fairbanks Gang Assessment Methods / References / Appendix A Community Resident Survey / Appendix B Student Survey / Appendix C Youth Serving and Law Enforcement Agency Survey / Appendix D Gang Member Interview For

    Limits on State Power to Tax Incomes of Foreign Corporations

    Get PDF

    Ab initio electronic structure calculations of solid, solution-processed metallotetrabenzoporphyrins

    Full text link
    An ab initio study of the electronic structures of solid metallotetrabenzoporphyrins (MTBPs) utilized in organic transistors and photovoltaics is presented. Bandstructures, densities of states, and orbitals are calculated for H2, Cu, Ni, and Zn core substitutions of the unit cell of solid TBP, as deposited via soluble precursors that are thermally annealed to produce polycrystalline, semiconducting thin-films. While the unit cells of the studied MTBPs are nearly isomorphous, substitution of the core atoms alters the structure of the bands around the energy bandgap and the composition of the densities of states. Cu and Ni core substitutions introduce nearly-dispersionless energy bands near the valence and conduction band edges, respectively, that form acceptor or deep generation/recombination states.Comment: 7 pages, 3 figures, 4 table

    North-south asymmetry in activity on the Sun and cosmic ray density gradients

    Get PDF
    The marked N-S asymmetry in solar activity (with predominant activity in the Sun's Northern Hemisphere) during the 1960's could certainly account for a S-pointing cosmic ray gradient. It is also clear from the data that the response to this change in solar activity asymmetry, and the related change in the perpendicular cosmic ray density gradient, is different for cosmic ray telescopes in the Earth's Northern and Southern Hemispheres. Northern Hemisphere detectors see a S-pointing gradient in the 60's and a N-pointing gradient after 1971, while Southern Hemisphere telescopes see a S-pointing gradient both before and after the reversal

    Macropolyhedral boron-containing cluster chemistry. Ligand-induced two-electron variations of intercluster bonding intimacy. Structures of nineteen-vertex[(eta(5)-C5Me5) HIrB18H19(PMe2Ph)] and the related carbene complex [(eta(5)-C5Me5)HIrB18H19{C(NHMe)(2)}]

    Get PDF
    Addition of PMe2Ph to fused-cluster syn-[(η5-C5Me5)IrB18H20] 1 to give [(η5-C5Me5)HIrB18H19(PMe2Ph)] 3 entails a diminution in the degree of intimacy of the intercluster fusion, rather than retention of inter-subcluster binding intimacy and a nido → arachno conversion of the character of either of the subclusters. Reaction with MeNC gives [(η5-C5Me5)HIrB18H19{C(NHMe)2}] 4 which has a similar structure, but with the ligand now being the carbene {:C(NHMe)2}, resulting from a reductive assembly reaction involving two MeNC residues and the loss of a carbon atom

    Macropolyhedral boron-containing cluster chemistry: two-electron variations in intercluster bonding intimacy. Contrasting structures of 19-vertex [(eta(5)-C5Me5)HIrB18H19(PHPh2)] and [(eta(5) -C5Me5)IrB18H18(PH2Ph)]

    Get PDF
    Fused double-cluster [(5-C5Me5)IrB18H18(PH2Ph)]8, from syn-[(5-C5Me5)IrB18H20] 1 and PH2Ph, retains the three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(5-C5Me5)HIrB18H19(PHPh2)]6, from PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms via spontaneous dihydrogen loss from its precursor [(5-C5Me5)HIrB18H19(PH2Ph)]7, which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to 6

    Deep radio observations of the radio halo of the bullet cluster 1E 0657-55.8

    Get PDF
    We present deep 1.1-3.1 GHz Australia Telescope Compact Array observations of the radio halo of the bullet cluster, 1E 0657-55.8. In comparison to existing images of this radio halo the detection in our images is at higher significance. The radio halo is as extended as the X-ray emission in the direction of cluster merger but is significantly less extended than the X-ray emission in the perpendicular direction. At low significance we detect a faint second peak in the radio halo close to the X-ray centroid of the smaller sub-cluster (the bullet) suggesting that, similarly to the X-ray emission, the radio halo may consist of two components. Finally, we find that the distinctive shape of the western edge of the radio halo traces out the X-ray detected bow shock. The radio halo morphology and the lack of strong point-to-point correlations between radio, X-ray and weak-lensing properties suggests that the radio halo is still being formed. The colocation of the X-ray shock with a distinctive radio brightness edge illustrates that the shock is influencing the structure of the radio halo. These observations support the theory that shocks and turbulence influence the formation and evolution of radio halo synchrotron emission.Comment: 15 pages, 16 figures, 3 tables. Accepted by MNRA
    • …
    corecore