2,109 research outputs found

    Velocity measurements by laser resonance fluorescence

    Get PDF
    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation

    A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method

    Get PDF
    A 20-year retrospective reanalysis of the ocean state in the Baltic Sea is constructed by assimilating available historical temperature and salinity profiles into an operational numerical model with three-dimensional variational (3DVAR) method. To determine the accuracy of the reanalysis, the authors present a series of comparisons to independent observations on a monthly mean basis. <br><br> In the reanalysis, temperature (T) and salinity (S) fit better with independent measurements than the free run at different depths. Overall, the mean biases of temperature and salinity for the 20 year period are reduced by 0.32 °C and 0.34 psu, respectively. Similarly, the mean root mean square error (RMSE) is decreased by 0.35 °C for temperature and 0.3 psu for salinity compared to the free run. The modeled sea surface temperature, which is mainly controlled by the weather forcing, shows the least improvements due to sparse in situ observations. Deep layers, on the other hand, witness significant and stable model error improvements. In particular, the salinity related to saline water intrusions into the Baltic Proper is largely improved in the reanalysis. The major inflow events such as in 1993 and 2003 are captured more accurately as the model salinity in the bottom layer is increased by 2–3 psu. Compared to independent sea level at 14 tide gauge stations, the correlation between model and observation is increased by 2%–5%, while the RMSE is generally reduced by 10 cm. It is found that the reduction of RMSE comes mainly from the reduction of mean bias. In addition, the changes in density induced by the assimilation of T/S contribute little to the barotropic transport in the shallow Danish Transition zone. <br><br> The mixed layer depth exhibits strong seasonal variations in the Baltic Sea. The basin-averaged value is about 10 m in summer and 30 m in winter. By comparison, the assimilation induces a change of 20 m to the mixed layer depth in deep waters and wintertime, whereas small changes of about 2 m occur in summer and shallow waters. It is related to the strong heating in summer and the dominant role of the surface forcing in shallow water, which largely offset the effect of the assimilation

    Modelling Heat Transfer of Carbon Nanotubes

    Full text link
    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.Comment: 10 pages, 4 figure

    Nonperiodic oscillation of bright solitons in the condensates with a periodically oscillating harmonic potential

    Full text link
    Considering a periodically oscillating harmonic potential, we explore the dynamics properties of bright solitons in a Bose-Einstein condensate. It is found that under a slower oscillating potential, soliton movement exhibits a nonperiodic oscillation while it is hardly affected under a fast oscillating potential. Furthermore, the head-on and/or "chase" collisions of two solitons have been obtained, which can be controlled by the oscillating frequency of potential.Comment: 4 pages, 2 figure

    Exact solution of the one-dimensional ballistic aggregation

    Full text link
    An exact expression for the mass distribution ρ(M,t)\rho(M,t) of the ballistic aggregation model in one dimension is derived in the long time regime. It is shown that it obeys scaling ρ(M,t)=t4/3F(M/t2/3)\rho(M,t)=t^{-4/3}F(M/t^{2/3}) with a scaling function F(z)z1/2F(z)\sim z^{-1/2} for z1z\ll 1 and F(z)exp(z3/12)F(z)\sim \exp(-z^3/12) for z1z\gg 1. Relevance of these results to Burgers turbulence is discussed.Comment: 11 pages, 2 Postscript figure

    Circulation Statistics in Three-Dimensional Turbulent Flows

    Full text link
    We study the large λ\lambda limit of the loop-dependent characteristic functional Z(λ)=Z(\lambda)=, related to the probability density function (PDF) of the circulation around a closed contour cc. The analysis is carried out in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of the saddle-point technique. Axisymmetric instantons, labelled by the component σzz\sigma_{zz} of the strain field -- a partially annealed variable in our formalism -- are obtained for a circular loop in the xyxy plane, with radius defined in the inertial range. Fluctuations of the velocity field around the saddle-point solutions are relevant, leading to the lorentzian asymptotic behavior Z(λ)1/λ2Z(\lambda) \sim 1/{\lambda^2}. The O(1/λ4){\cal O}(1 / {\lambda^4}) subleading correction and the asymmetry between right and left PDF tails due to parity breaking mechanisms are also investigated.Comment: Computations are discussed in a more detailed way; accepted for publication in Physical Review

    Application of CRISPR/Cas9 in crop quality improvement

    Get PDF
    The various crop species are major agricultural products and play an indispensable role in sustaining human life. Over a long period, breeders strove to increase crop yield and improve quality through traditional breeding strategies. Today, many breeders have achieved remarkable results using modern molecular technologies. Recently, a new gene-editing system, named the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, has also succeeded in improving crop quality. It has become the most popular tool for crop improvement due to its versatility. It has accelerated crop breeding progress by virtue of its precision in specific gene editing. This review summarizes the current application of CRISPR/Cas9 technology in crop quality improvement. It includes the modulation in appearance, palatability, nutritional components and other preferred traits of various crops. In addition, the challenge in its future application is also discussed
    corecore