Abstract

We study the large λ\lambda limit of the loop-dependent characteristic functional Z(λ)=Z(\lambda)=, related to the probability density function (PDF) of the circulation around a closed contour cc. The analysis is carried out in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of the saddle-point technique. Axisymmetric instantons, labelled by the component σzz\sigma_{zz} of the strain field -- a partially annealed variable in our formalism -- are obtained for a circular loop in the xyxy plane, with radius defined in the inertial range. Fluctuations of the velocity field around the saddle-point solutions are relevant, leading to the lorentzian asymptotic behavior Z(λ)1/λ2Z(\lambda) \sim 1/{\lambda^2}. The O(1/λ4){\cal O}(1 / {\lambda^4}) subleading correction and the asymmetry between right and left PDF tails due to parity breaking mechanisms are also investigated.Comment: Computations are discussed in a more detailed way; accepted for publication in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019