13 research outputs found

    Periodic CO2 Injection for Improved Storage Capacity and Pressure Management under Intermittent CO2 Supply

    Get PDF
    Storing CO2 in geological formations is an important component of reducing greenhouse gases emissions. The Carbon Capture and Storage (CCS) industry is now in its establishing phase, and if successful, massive storage volumes would be needed. It will hence be important to utilize each storage site to its maximum, without challenging the formation integrity. For different reasons, supply of CO2 to the injection sites may be periodical or unstable, often considered as a risk element reducing the overall efficiency and economics of CCS projects. In this paper we present outcomes of investigations focusing on a variety of positive aspects of periodic CO2 injection, including pressure management and storage capacity, also highlighting reservoir monitoring opportunities. A feasibility study of periodic injection into an infinite saline aquifer using a mechanistic reservoir model has indicated significant improvement in storage capacity compared to continuous injection. The reservoir pressure and CO2 plume behavior were further studied revealing a ‘CO2 expansion squeeze’ effect that governs the improved storage capacity observed in the feasibility study. Finally, the improved pressure measurement and storage capacity by periodic injection was confirmed by field-scale simulations based on a real geological set-up. The field-scale simulations have confirmed that ‘CO2 expansion squeeze’ governs the positive effect, which is also influenced by well location in the geological structure and aquifer size, while CO2 dissolution in water showed minor influence. Additional reservoir effects and risks not covered in this paper are then highlighted as a scope for further studies. The value of the periodic injection with intermittent CO2 supply is finally discussed in the context of deployment and integration of this technology in the establishing CCS industry.publishedVersio

    Assessment of a mature hydrocarbon field in SE Czech Republic for a CO2 storage pilot

    Get PDF
    Preparation and execution of a CO2 storage pilot project is one of the first logical steps in the effort to kick-start CCS in the region of Central & Eastern Europe, utilizing onshore geological structures for permanent CO2 storage. The main aims of this activity are to test the suitability of local geological structures and demonstrate the feasibility and safety of the technology to local stakeholders. The Czech-Norwegian CO2-SPICER project is an example of such developments. The target structure of CO2-SPICER – Zar−3 – is a hydrocarbon field situated in an erosional relict of fractured carbonates of Jurassic age on the SE slopes of the Bohemian Massif, covered by Paleogene deposits and Carpathian flysch nappes. The first stage of site assessment has been completed, and the article provides an overview of its results. Construction of a 3D geological model of the storage complex was the first important step on the route, preparing input for subsequent reservoir simulations of the field history and planned CO2 injection. Reservoir assessment is also focusing on specific features of the fractured-vuggy reservoir and accounting for the effects associated with CO2 injection, including geochemistry and geomechanics. Geochemical studies focus on fluid-rock interactions, and geomechanical ones on formation integrity and fracture mechanics under reservoir pressure build-up and cooling of the formation by injected CO2. Risk assessment is another component of the project, aiming at identifying potential leakage pathways and assessing consequences for the area of interest. Preparatory work for the site monitoring plan includes applicability analysis of various monitoring methods, supported by execution of baseline monitoring of selected phenomena, in particular composition of soil gas, natural and induced seismicity and properties of shallow groundwater. The project also includes evaluation of advanced reservoir containment monitoring technologies including time-lapse pressure transient analysis. While the key actions are directed towards the piloting activities, the project also looks beyond to full-field implementation and potential to establish a regional CCS cluster.acceptedVersio

    Periodic CO2 Injection for Improved Storage Capacity and Pressure Management under Intermittent CO2 Supply

    No full text
    Storing CO2 in geological formations is an important component of reducing greenhouse gases emissions. The Carbon Capture and Storage (CCS) industry is now in its establishing phase, and if successful, massive storage volumes would be needed. It will hence be important to utilize each storage site to its maximum, without challenging the formation integrity. For different reasons, supply of CO2 to the injection sites may be periodical or unstable, often considered as a risk element reducing the overall efficiency and economics of CCS projects. In this paper we present outcomes of investigations focusing on a variety of positive aspects of periodic CO2 injection, including pressure management and storage capacity, also highlighting reservoir monitoring opportunities. A feasibility study of periodic injection into an infinite saline aquifer using a mechanistic reservoir model has indicated significant improvement in storage capacity compared to continuous injection. The reservoir pressure and CO2 plume behavior were further studied revealing a ‘CO2 expansion squeeze’ effect that governs the improved storage capacity observed in the feasibility study. Finally, the improved pressure measurement and storage capacity by periodic injection was confirmed by field-scale simulations based on a real geological set-up. The field-scale simulations have confirmed that ‘CO2 expansion squeeze’ governs the positive effect, which is also influenced by well location in the geological structure and aquifer size, while CO2 dissolution in water showed minor influence. Additional reservoir effects and risks not covered in this paper are then highlighted as a scope for further studies. The value of the periodic injection with intermittent CO2 supply is finally discussed in the context of deployment and integration of this technology in the establishing CCS industry

    Advancing Deep Learning to Improve Upstream Petroleum Monitoring

    Get PDF
    Data analytics is rapidly growing field in both academia and industry dealing with processing and interpreting large and complex data sets. It has got already many successful applications via advancing machine (ML) and deep learning (DL) techniques, starting to evolve in the upstream petroleum industry as well. The industry operates now with huge amount of sensors installed in different facilities, particularly in production and injection wells. These sensors provide millions of measurements, such as pressure, temperature, and rate every year for every well. The measurements may be highly correlated and carry crucial information for decision making. This paper concentrates on pressure-rate data sets accumulated with massive installation of permanent downhole gauges in such wells. The non-linear autoregessive (NARX) and the long short term memory (LSTM) neural networks were assembled and tested on a synthetic data set to compare results of pressure prediction, already addressed in the literature. The LSTM provided better predictions, but did not manage to capture entirely the pattern of the data. The shifting window method was then applied to improve the LSTM prediction capabilities, based on previous successful application in forecasting electricity demand. The method implies smooth transition from training to prediction improving network performance. The LSTM with the shifting window provided more accurate results for pressure prediction, and it was then successfully applied for rate prediction. Testing of different configurations of the LSTM network has shown that the pressure prediction performs well with less number of nodes in the hidden layers if compared with the rate predictions. Significant error decrease is achieved relatively fast (after 20 iterations) for both prediction tasks, making such predictions feasible for large data sets. The results provide basis for filling gaps in well monitoring data and short-term performance forecast, crucial tasks for decision making in all the industries operating with wells.publishedVersio

    Well Performance Metrics Suitable for Automated Monitoring

    No full text

    Periodic CO2 Injection for Improved Storage Capacity and Pressure Management under Intermittent CO2 Supply

    No full text
    Storing CO2 in geological formations is an important component of reducing greenhouse gases emissions. The Carbon Capture and Storage (CCS) industry is now in its establishing phase, and if successful, massive storage volumes would be needed. It will hence be important to utilize each storage site to its maximum, without challenging the formation integrity. For different reasons, supply of CO2 to the injection sites may be periodical or unstable, often considered as a risk element reducing the overall efficiency and economics of CCS projects. In this paper we present outcomes of investigations focusing on a variety of positive aspects of periodic CO2 injection, including pressure management and storage capacity, also highlighting reservoir monitoring opportunities. A feasibility study of periodic injection into an infinite saline aquifer using a mechanistic reservoir model has indicated significant improvement in storage capacity compared to continuous injection. The reservoir pressure and CO2 plume behavior were further studied revealing a ‘CO2 expansion squeeze’ effect that governs the improved storage capacity observed in the feasibility study. Finally, the improved pressure measurement and storage capacity by periodic injection was confirmed by field-scale simulations based on a real geological set-up. The field-scale simulations have confirmed that ‘CO2 expansion squeeze’ governs the positive effect, which is also influenced by well location in the geological structure and aquifer size, while CO2 dissolution in water showed minor influence. Additional reservoir effects and risks not covered in this paper are then highlighted as a scope for further studies. The value of the periodic injection with intermittent CO2 supply is finally discussed in the context of deployment and integration of this technology in the establishing CCS industry

    Periodic CO2 Injection for Improved Storage Capacity and Pressure Management under Intermittent CO2 Supply

    No full text
    Storing CO2 in geological formations is an important component of reducing greenhouse gases emissions. The Carbon Capture and Storage (CCS) industry is now in its establishing phase, and if successful, massive storage volumes would be needed. It will hence be important to utilize each storage site to its maximum, without challenging the formation integrity. For different reasons, supply of CO2 to the injection sites may be periodical or unstable, often considered as a risk element reducing the overall efficiency and economics of CCS projects. In this paper we present outcomes of investigations focusing on a variety of positive aspects of periodic CO2 injection, including pressure management and storage capacity, also highlighting reservoir monitoring opportunities. A feasibility study of periodic injection into an infinite saline aquifer using a mechanistic reservoir model has indicated significant improvement in storage capacity compared to continuous injection. The reservoir pressure and CO2 plume behavior were further studied revealing a ‘CO2 expansion squeeze’ effect that governs the improved storage capacity observed in the feasibility study. Finally, the improved pressure measurement and storage capacity by periodic injection was confirmed by field-scale simulations based on a real geological set-up. The field-scale simulations have confirmed that ‘CO2 expansion squeeze’ governs the positive effect, which is also influenced by well location in the geological structure and aquifer size, while CO2 dissolution in water showed minor influence. Additional reservoir effects and risks not covered in this paper are then highlighted as a scope for further studies. The value of the periodic injection with intermittent CO2 supply is finally discussed in the context of deployment and integration of this technology in the establishing CCS industry

    Review of Different Methods for Identification of Transients in Pressure Measurements by Permanent Downhole Gauges Installed in Wells

    No full text
    Permanent downhole gauges (PDG) are massively installed in injection and production wells operated in different industries such as oil and gas, geological CO2 storage, and the geothermal industry. These gauges provide a vast amount of real-time pressure measurements. The pressure measurements may be divided into periods with a predominantly monotonic change of pressure in response to a sudden change of rate, called transients. These transients are caused by well operations, such as variation of injection or production rate and well shut-ins. Transient identification is one of the important steps in processing and interpreting the PDG data. Traditional transient identification is performed by processing and analyzing with human involvement, which is a step in post-operation well analysis. In modern well surveillance technology, permanent and reliable data transmission from the wellbore to the surface provide the possibility to analyze well performance in real time or proactively. So automated transient identification is a practical demand, but a challenge at the same time. This article starts with the definition of a transient, then reviews and compares seven methods for transient identification proposed by previous works available in the literature. A comparative analysis of these methods is carried out accounting for the detection algorithm and procedure, results of testing, and general positive and negative sides of performance and application of these methods. The results of this review facilitate further developments of field data interpretation techniques by the R&D community and academia and may help in the selection of a proper method for further application in well surveillance workflows developed in the industry
    corecore