30 research outputs found

    Individual educational trajectory: Grounds for electives choice

    Get PDF
    The fact that individual educational trajectory (IET) is one of the key factors of modern Russian education development determines relevancy of studying issues of IET implementation into higher educational institutions teaching process. This research aims at rates students’ awareness of IET advantages and finding out factors influencing students’ choices. A survey covered first-year students of the Saratov State Law Academy (N = 1325, aged 16–18, male – 38,2%, female – 61,8%), pursuing Bachelor and Specialist Degrees. Authorial questionnaire is aimed at rating students’ awareness of IET advantages and finding out factors influencing students’ choices. The survey results analysis showed that a students’ IET awareness level is rather high but there is a need in additional measures for clarifying IET advantages and opportunities. Firstly, it is essential to broaden a list of IET information resources: a higher educational institution official website, deans’ offices, curators, tutors, teachers, written sources. Secondly, it is necessary to structure an electives choice procedure. Thirdly, there is a need in working out a plan of events to be held during the first term of the first year of study to shape first-year students’ skills of an informed choice. Constant monitoring of studying within IET (students’ and teachers’ surveys, observations, interviews) will provide material for further research in several directions: 1) an analysis of cumulated material for providing teaching results of high quality; 2) a deeper research of factors influencing elective choices; 3) studying of digital technologies opportunities for shaping IET

    Organization of β-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes

    Get PDF
    The sympathetic nervous system regulates cardiac function through the activation of adrenergic receptors (ARs). β1 and β2ARs are the primary sympathetic receptors in the heart and play different roles in regulating cardiac contractile function and remodeling in response to injury. In this study, we examine the targeting and trafficking of β1 and β2ARs at cardiac sympathetic synapses in vitro. Sympathetic neurons form functional synapses with neonatal cardiac myocytes in culture. The myocyte membrane develops into specialized zones that surround contacting axons and contain accumulations of the scaffold proteins SAP97 and AKAP79/150 but are deficient in caveolin-3. The β1ARs are enriched within these zones, whereas β2ARs are excluded from them after stimulation of neuronal activity. The results indicate that specialized signaling domains are organized in cardiac myocytes at sites of contact with sympathetic neurons and that these domains are likely to play a role in the subtype-specific regulation of cardiac function by β1 and β2ARs in vivo

    Magnetic field processing to enhance critical current densities of MgB2 superconductors

    Get PDF
    A magnetic field of up to 12T was applied during the sintering process of pure MgB2 and carbon nanotube(CNT)dopedMgB2wires. The authors have demonstrated that magnetic field processing results in grain refinement, homogeneity, and enhancement in Jc(H) and Hirr. The extent of improvement in Jc increases with increasing field. The Jc for a 10T field processed CNTdoped sample increases by a factor of 3 at 10K and 8T and at 20K and 5T, respectively. Hirr for the 10T field processed CNTdoped sample reached 9T at 20K, which exceeded the best value of SiC dopedMgB2 at 20K. Magnetic field processing reduces the resistivity in CNTdopedMgB2, straightens the entangled CNTs, and improves the adherence between CNTs and the MgB2 matrix

    The CDC42-Interacting Protein 4 Controls Epithelial Cell Cohesion and Tumor Dissemination

    Get PDF
    SummaryThe role of endocytic proteins and the molecular mechanisms underlying epithelial cell cohesion and tumor dissemination are not well understood. Here, we report that the endocytic F-BAR-containing CDC42-interacting protein 4 (CIP4) is required for ERBB2- and TGF-β1-induced cell scattering, breast cancer (BC) cell motility and invasion into 3D matrices, and conversion from ductal breast carcinoma in situ to invasive carcinoma in mouse xenograft models. CIP4 promotes the formation of an E-cadherin-CIP4-SRC complex that controls SRC activation, E-cadherin endocytosis, and localized phosphorylation of the myosin light chain kinase, thereby impinging on the actomyosin contractility required to generate tangential forces to break cell-cell junctions. CIP4 is upregulated in ERBB2-positive human BC, correlates with increased distant metastasis, and is an independent predictor of poor disease outcome in subsets of BC patients. Thus, it critically controls cell-cell cohesion and is required for the acquisition of an invasive phenotype in breast tumors

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore