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SUMMARY

The role of endocytic proteins and the molecular
mechanisms underlying epithelial cell cohesion and
tumor dissemination are not well understood. Here,
we report that the endocytic F-BAR-containing
CDC42-interacting protein 4 (CIP4) is required for
ERBB2- and TGF-b1-induced cell scattering, breast
cancer (BC) cell motility and invasion into 3D
matrices, and conversion from ductal breast carci-
noma in situ to invasive carcinoma in mouse xeno-
graft models. CIP4 promotes the formation of an
E-cadherin-CIP4-SRC complex that controls SRC
activation, E-cadherin endocytosis, and localized
phosphorylation of the myosin light chain kinase,
thereby impinging on the actomyosin contractility
required to generate tangential forces to break cell-
cell junctions. CIP4 is upregulated in ERBB2-positive
human BC, correlates with increased distant metas-
tasis, and is an independent predictor of poor dis-
ease outcome in subsets of BC patients. Thus, it
critically controls cell-cell cohesion and is required
for the acquisition of an invasive phenotype in breast
tumors.

INTRODUCTION

Epithelial cells organize into polarized, coherent sheets of cells,

kept together by cell-cell adhesion structures. A key component

of epithelial junctions in vertebrates is the transmembrane pro-

tein E-cadherin, which defines the so-called adherens junction

(AJ) (Hyafil et al., 1981). AJs undergo rapid assembly and disas-

sembly to enable epithelial tissuemorphogenesis and rearrange-

ment, as well as the acquisition of cell motility during epithelial-

mesenchymal transition (EMT) (Thiery et al., 2009). However,

how cell-cell adhesion is disrupted during EMT is poorly under-
Developme
stood. The key event in this process is the loss of E-cadherin-

mediated cell-cell adhesion, most likely as a consequence of

reduced E-cadherin transcription, although alternative mecha-

nisms might exist.

A wealth of recent evidence points to a crucial role of E-cad-

herin endocytosis and recycling in tissue morphogenesis and

EMT (Baum and Georgiou, 2011). Endocytic removal of E-cad-

herin from the cell surface is acutely induced by activation of

receptor (Orlichenko et al., 2009) and nonreceptor (Avizienyte

et al., 2002) tyrosine kinases, as well as by stimulation with trans-

forming growth factor-b (TGF-b) (Janda et al., 2006). In the case

of epidermal growth factor (EGF)-induced E-cadherin down-

regulation and AJ disassembly, SRC has an important role.

SRC forms complexes with E-cadherin and the EGF receptor

(EGFR) (Shen et al., 2008) and, on activation, promotes EMT

by phosphorylating E-cadherin and triggering its ubiquitination-

dependent endocytosis and degradation (Fujita et al., 2002).

Cell-cell adhesion can, in turn, modulate growth factor signaling

(Qian et al., 2004), suggesting that E-cadherin endocytosis and

signal transduction from receptor tyrosine kinases (RTKs) are

intimately intertwined in the maintenance of epithelial cell

morphogenesis, as well as in controlling epithelial cell motility.

It remains unclear, however, how RTK activation induces E-cad-

herin dynamics and trafficking, what the key molecular determi-

nants underlying this process are, and howE-cadherin endocytic

machinery affects junctional tension.

One set of proteins ideally positioned to control E-cadherin

trafficking and junctional stability are the FCH-Bin-Amphiphy-

sin-Rvs (F-BAR)-domain containing proteins. In mammals,

F-BAR proteins (hereinafter referred to as the TOCA family)

include three members: TOCA-1 (Transducer of CDC42-depen-

dent actin assembly), CIP4 (CDC42-interacting protein 4), and

FBP17 (formin-binding protein 17). These proteins are implicated

in clathrin-mediated endocytosis (CME), during which they

sense and promote membrane curvature through their F-BAR

domain and bind to key regulators of actin dynamics (e.g., the

nucleation promoting factor N-WASP) and endocytosis (e.g., dy-

namin) through their SH3 domain (Itoh et al., 2005; Tian et al.,

2000). Furthermore, TOCA-1 and CIP4 act as effectors of the
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small GTPase CDC42 (Aspenström, 2009). Recently, both in

C. elegans and in Drosophila, TOCA family proteins have been

shown to localize at cell-cell junctions where they regulate

cortical F-actin organization and junctional proteins (Georgiou

et al., 2008; Giuliani et al., 2009; Leibfried et al., 2008). However,

the functional role of this protein family in mammalian epithelial

cell morphogenesis and epithelial tumor cell dissemination is

unknown.

Here, we show that CIP4, by regulating E-cadherin internaliza-

tion and junctional actomyosin contractility, controls cell scat-

tering, EMT, and invasion in response to various motogenic

signals. We further show that elevated CIP4 expression is

selected in ERBB2+ and triple negative breast cancer (BC)

tumors and correlates with increased risk of distant metastasis.

Consistently, CIP4 is required for the conversion from ductal car-

cinoma in situ (DCIS) to invasive ductal carcinoma (IDC) inmouse

xenograft models.

RESULTS

CIP4 Controls MCF10A Cell Cohesion
To investigate the hypothesis that the TOCA family proteins

are involved in epithelial morphogenesis also in mammals, we

silenced each of the members of the family in normal human

mammary epithelial cells MCF10A, either individually or in com-

bination (Figure 1A). CIP4-depleted cells—but not scramble-

control (scr-CTR), TOCA1-knockdown (TOCA1-KD), or FBP17-

KD cells— tended to cluster into cohesive colonies despite the

presence of EGF, which is required for MCF10A growth and nor-

mally induces a scattered cell phenotype (Debnath et al., 2003)

(Figure 1B). CIP4 removal significantly increased the number of

tightly compacted colonies and concomitantly reduced the num-

ber of single isolated cells (Figure 1C). Simultaneous silencing

of two or all three TOCA family proteins did not augment the

proportion of compact colonies versus single cells observed

following depletion of CIP4 alone (Figure 1C; Figure S1A

available online). Furthermore, reconstitution of CIP4 in CIP4-

KD cells, using an RNAi-resistant green fluorescent protein

(GFP)-CIP4 expressed at levels comparable to the endogenous

protein, restored a scattered cell phenotype, with significantly

fewer and less compact cell clusters than in CIP4-KD cultures

(Figures 1D–1F). Thus, removal of CIP4, but not of other TOCA

family members, enhances cell cohesion and the formation of

tightly adherent cell clusters.

Next, we investigated cell-cell junction status after CIP4

removal, focusing on AJs. CIP4 depletion caused a marked in-

crease in junctional E-cadherin in clustered cells as compared

to scramble-control (scr-CTR) cells (Figures S1B and S1C),

without affecting the rate of cell proliferation (Figure S1D). The

formation of compact colonies following CIP4 removal was

also accompanied by a homogenous distribution of the Golgi

complex that was oriented in the majority of clustered CIP4-KD

cells (>70%) toward the free-facing surface of the cell (Fig-

ure S1E). In contrast, control cells formed loosely adherent col-

onies, which displayed a randomly oriented Golgi complex,

even in cells engaged in junctional contacts along three sides

(compare insets in Figure S1E). Additionally, CIP4-KD cell col-

onies displayed thick F-actin cables along the external cortex,

while F-actin was reduced along cell-cell junctions as compared
554 Developmental Cell 30, 553–568, September 8, 2014 ª2014 Else
to scr-CTR or TOCA-1-KD and FBP17-KD cells (Figure S1F).

Collectively, these findings indicate that CIP4 is unique among

the TOCA family members in that it regulates cell cohesion and

junctional adhesion of MCF10A cells.

CIP4 Does Not Influence Motility Parameters of
Individual MCF10A Cells but Indirectly Controls
the Motility Behavior
The dynamic remodeling of cell-cell junctions is crucial for

epithelial cell motility. Thus, we tested the motility of the different

MCF10A TOCA family-KD cells. In the presence of EGF, control

cells were scattered and highly motile. In contrast, CIP4-KD cells

tended to aggregate into clusters and ceased migration (Movie

S1). Indeed, quantification of motility parameters indicated that

CIP4-KD cells displayed markedly reduced velocity once they

encountered a cell cluster (Figure S2A). However, isolated

CIP4-KD cells moved at a speed similar to that of control cells

(Figure S2B), arguing that CIP4 has no major effect on the basic

cell locomotion machinery. Similar migratory behavior was

observed in the 2KD and 3KD cells (Figures S2A and S2B),

whereas, TOCA1-KD and FBP17-KD MCF10A cells resembled

control cells, albeit removal of FBP17 reduced slightly cell veloc-

ity (Figures S2A and S2B and Movie S1). Notably, all cell lines

eventually formed an epithelial monolayer and established stable

cell-cell junctions. Additionally, the ability of MCF10A cells to

migrate into a wound as a cohesive cohort was not affected

by removal of CIP4 (Figure S2C). Together, these results sug-

gest that CIP4 indirectly controls motility behavior, likely by sta-

bilizing AJs.

CIP4 Is Required for EGF-Induced Scattering ofMCF10A
Cells but Does Not Affect EGFR Signaling, EGFR
Trafficking, and CDC42-N-WASP Activation
In the presence of EGF, control MCF10A cells, seeded sparsely,

were scattered, elongated, and failed to form stable cell-cell

contacts (Figure S2D). After EGF deprivation, control cells,

TOCA1-KD, and FBP17-KD cells, formed compact cell clusters

similarly to CIP4-KD cells grown in the presence of EGF (Figures

S2D and S2E). These results suggest that CIP4-KD cells might

be defective in responding to acute EGF stimulation. To test

this possibility, we performed EGF-induced cell scattering as-

says. Control and CIP4-KD cells deprived of EGF form compact

clusters. On EGF stimulation, control cells became very motile

and were almost completely scattered 2 hr after EGF addition

(Movie S2). In contrast, CIP4-KD cells were immobile and did

not start to scatter until 11 hr after EGF stimulation (Figure 1G

and Movie S2). We further quantified cell scattering by

measuring the total distance traveled by cells from their original

position within a colony. Removal of CIP4 reduced the scattering

distance by �80% compared to control cells (Figure 1H). The

increased cell compaction and delayed scattering of CIP4-KD

cells suggests that CIP4 might affect the ability of epithelial cells

to invade into the extracellular matrix (ECM). Consistently, CIP4

removal significantly impaired the invasive, EGF-dependent

chemotaxis of MCF10A cells into Matrigel-coated transwells

(Figure 1I).

To determine whether defective EGF-induced cell scattering

of CIP4-KD cells was due to alterations in EGFR signaling or

trafficking, we first evaluated the levels of EGFR expression.
vier Inc.
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Figure 1. CIP4 Regulates MCF10A Cell Compaction and EGF-Induced Scattering

(A) IB with indicated antibodies of lysates of shRNA-lentivirally infectedMCF10A cells: scr-CTR and shRNAs against CIP4 (CIP4-KD #1 and #2), TOCA-1 (TOCA1-

KD), or FBP17 (FBP17-KD), alone or together (CIP4/TOCA-1 double KD; 2KD) (CIP4/TOCA-1/FBP17 triple KD; 3KD).

(B) Phase contrast images of various MCF10A cell lines growing in complete medium. Magnified view of the boxed area is shown. Scale bars represent 1,000 mm.

(C) The percentage of single cells or clusters relative to the scr-CTR MCF10A cells (n = 200 cells per genotype in three independent experiments). ***p < 0.001,

t test.

(D) Expression levels of CIP4 by IB in scr-CTR and CIP4-KD MCF10A cells expressing an shRNA-resistant CIP4 mutant (resCIP4-GFP) or an empty GFP vector

(eGFP).

(E) Images of CIP4-KD#1 MCF10A cells expressing GFP or resCIP4-GFP. Left panels: low magnification of GFP- or resCIP4-expressing CIP4-KD. Scale bar

represents 100 mm. Right panels: merged images of GFP epifluorescence (green), F-actin (red), and DAPI nuclei (blue). Scale bar represents 20 mm.

(F) The number of single and clustered cells was quantified as in (C) (n = 226–647 cells). ***p < 0.001, t test.

(G and H) Still images of scr-CTR and CIP4-KD#1 MCF10A cells induced to scatter by adding EGF (100 ng/ml) to EGF-starved cells. Cell scattering quantified

either (right graph) (G) by determining the time required to complete scattering or (H) by tracking individual cells, measuring accumulated distance covered by

cells during 4 hr after EGF stimulation. Data indicate the percentage of accumulated scattering cell distance with respect to control cells (n = 25 cells per

experiment in four experiments). ***p < 0.001, t test.

(I) Invasion throughMatrigel-coated transwells toward EGF assessed for 24 hr. Representative images are shown. Cell invasion is the percentage of invasive cells

with respect to control cells. **p < 0.01, t test.

Error bars indicate mean ± SEM. See also Movie S2.
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We detected no significant differences in total or cell surface

levels of EGFR among the cell lines tested (Figures S3A and

S3B). Similarly, CIP4 depletion did not significantly alter EGFR

signaling as determined by measuring the levels of activated

ERK1/2, AKT (Figure S3C), and EGFR (Figure S3F).

TOCA family members have been shown to control early

events of EGFR CME and trafficking (Itoh et al., 2005). However,

CIP4 depletion did not significantly alter the rates of EGFR endo-
Developme
cytosis (Figure S3D), recycling (Figures S3D and S3E), or the

extent of EGFR degradation (Figure S3F). Thus, CIP4 is dispens-

able for EGFR signaling, stability, and intracellular trafficking.

TOCA family members are also essential for activation of

N-WASP/WASP downstream of CDC42. However, removal of

CIP4 did not alter EGF-mediated activation of N-WASP, moni-

tored by measuring its tyrosine phosphorylation (Torres and

Rosen, 2003) (Figure S3G), suggesting that this latter pathway
ntal Cell 30, 553–568, September 8, 2014 ª2014 Elsevier Inc. 555
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Figure 2. CIP4 Controls EGF-Induced Actomyosin Tensile Junctional Stress across E-cadherin

(A) Left panels: IB of lysates of scr-CTR and CIP4-KD MCF10A cells treated with EGF (100 ng/ml), antibodies as indicated. Right panels: EGF-deprived scr-CTR

andCIP4-KD #1MCF10A cells plated on plastic stimulated with EGF and stained with anti-pMLC antibodies or phalloidin to detect F-actin. Arrows indicate pMLC

at junctions. Scale bar represents 25 mm. h, hours.

(B) Scheme of E-cadherin tensor sensor.

(C) Representative images fromMovie S4 showing the FRET:CFP(E2) ratio of scr-CTR and CIP4-KD-MCF10A cells expressing the EcadTsMod-CFP and induced

to scatter by EGF addition. The upper and lower limits of the FRET:CFP ratio range are shown on the left in the RATIO colored key (ImageJ software). CIP4-KD

(legend continued on next page)
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is not responsible for the increased cell cohesion following CIP4

silencing.

CIP4 Controls Cell Scattering and Cohesion by
Regulating EGF-Induced Actomyosin Contraction
Epithelial cell scattering depends on modulation of junctional-

localized actomyosin contractility (de Rooij et al., 2005). Indeed,

analysis of enhanced green fluorescent protein (EGFP)-E-cad-

herin dynamics during Madin-Darby canine kidney cell scat-

tering revealed that tensile, orthogonal stresses build up along

cell-cell junctions until cells are pulled apart (de Rooij et al.,

2005). We observed a similar dynamic behavior of junctional

EGFP-E-cadherin during EGF-mediated scattering of MCF10A

cells (Movie S3). Conversely, in CIP4-depleted cells, orthogonal

tensile stress was insufficient to pull apart cell-cell junctions

(Movie S3). This result suggests that CIP4 might regulate EGF-

dependent contractility at junctions. To test this possibility, we

investigated the phosphorylation of the myosin II regulatory light

chain (pMLC), the main regulatory event leading to actomyosin

contractility (Bresnick, 1999). EGF stimulation increased total

levels of pMLC and promoted the accumulation of pMLC adja-

cent to cell-cell junctions in control cells. Both these events

were markedly diminished following CIP4 depletion (Figure 2A;

Figure S4A). To verify that CIP4 removal causes cell compaction,

at least in part, by impairing the localized accumulation of

pMLC and, thus, actomyosin contractility, we performed three

additional sets of experiments. In the first approach, we took

advantage of the finding that junctional E-cadherins act as

mechanosensor devices (Borghi et al., 2012). We used a next-

generation Förster resonance energy transfer (FRET)-based, E-

cadherin tension sensor [EcadTSMod-CFP(E2)] to measure the

magnitude of tensile forces transmitted through the cytoplasmic

domain of E-cadherin (Borghi et al., 2012). The EcadTSMod is

built by inserting in the cytoplasmic tail of E-cadherin the mono-

meric, aggregation-free variant of CFP, CFP(E2), followed by a

spider silk fragment that functions as a nanospring and Venus

(A206K) (Borghi et al., 2012). Under conditions of low tension,

CFP(E2) and Venus are close enough to undergo FRET; how-

ever, when orthogonal tensile force is applied, the distance be-

tween the two fluorescent proteins increases and FRET

decreases (Figure 2B). Thus, the FRET signal responds to me-

chanical tension across the E-cadherin molecule. EcadTS-

Mod_CFP(E2) is properly localized along the junction (Figure 2C).

We also expressed an EcadTSModDcyto-CFP(E2) as a control

construct, which can no longer interact with the underlying actin

cytoskeleton due to the lack of the b-catenin–binding domain;

hence, it is insensitive to tensile stresses (Borghi et al., 2012). Un-

der EGF deprivation, both scr-CTR and CIP4-KD cells display

similar elevated E-cadherin FRET index at cell-cell junction.

However, following EGF stimulation, the junctional FRET index

significantly decreased in scr-CTR but not in CIP4-KD (Figures

2C and 2D; Movie S4). We detected no variation in the FRET in-
cells appear smaller due to compaction.White numerals indicate examples ofman

of the EcadTsMod-CFP sensor. Scale bar represents 10 mm.

(D) Normalized FRET ratio at cell-cell junction of MCF10A cells treated as in (C). F

time 0 hr. Data are expressed as mean ± SEM. (n = 30 cell-cell contacts/experim

(E) EGF-deprived scr-CTR and CIP4-KD#1MCF10A cells plated on plastic were s

detect F-actin. Arrows indicate vinculin. Scale bar represents 20 mm.

Developme
dex when EcadTSModDcyto was used (Figure 2D). Thus, loss of

CIP4 prevents the accumulation of tension across junctional E-

cadherin. As a second approach, we exploited findings demon-

strating that the mechanoresponse of E-cadherin is potentiated

by vinculin, which is specifically recruited to anchor sites within

AJs in a myosin II- and actomyosin contractility-dependent

fashion (le Duc et al., 2010). Consistently, we found that, in con-

trol MCF10A cells, EGF induced accumulation of pMLC at adhe-

sion sites, which was accompanied by the accumulation of

vinculin (Figure 2E). Conversely, little or no detectable vinculin

accumulated at cell-cell junctions after removal of CIP4, mirror-

ing the lack of pMLC recruitment (Figure 2E). Third, we reasoned

that we should be able to rescue defective EGF-induced accu-

mulation of junctional pMLC and cell scattering in CIP4-KD

cells by enhancing cell contractility. Actomyosin contractility is

dependent on ECM cell adhesion (Geiger et al., 2009). Further-

more, increased cell adhesion strength correlates with increased

cell scattering (de Rooij et al., 2005). Hence, we tested whether

plating cells on an ECM that is known to activate integrin-medi-

ated adhesion and actomyosin contractility rescued defective

cell scattering of CIP4-KD cells. MCF10A cells rapidly adhere

and spread when plated onto fibronectin (Fn) but poorly adhere

to laminin and vitronectin (Figure S5A). CIP4 removal slightly de-

layed adhesion to Fn but did not affect cell spreading, integrin-

dependent activation of focal adhesion kinase (FAK; Figures

S5A–S5C) or the surface levels of total and active b1 and of total

a5b1 integrins (Figure S5D), despite a reduction in the internali-

zation of b1 adhesion receptors (Figure S5E). However, the cell

scattering deficiency and cell cohesion of CIP4-KD cells were

rescued by plating cells onto Fn (Figures 3A and 3B; Figures

S4B–S4D; Movie S5). This correlated with increased EGF-

induced levels of total and junctional-localized pMLC (Figure 3C

and Figure S4B). Collectively, these results suggest that CIP4 is

required to promote optimal EGF-induced actomyosin contrac-

tility, which contributes to the generation of sufficient tension to

break cell junctions apart and promote cell scattering.

CIP4 Is Required for E-cadherin Internalization on
EGF Stimulation
EGF stimulation promotes E-cadherin mobilization and disas-

sembly (Shen et al., 2008). The increased cell cohesion resulting

from CIP4 removal could partly be explained by a direct effect of

CIP4-KD on E-cadherin expression. However, E-cadherin levels

were not significantly different between control and CIP4-KD

MCF10A cells (Figure 4A). Alternatively, CIP4 might influence

E-cadherin trafficking. We first examined EGFP-E-cadherin dy-

namics after stimulation with EGF. Depletion of CIP4 impaired

increased E-cadherin internalization induced by EGF (Figure 4B)

and prevented junctional disruption (Figure 4B and Movie S3).

Next, we quantified E-cadherin internalization using a surface

biotinylation and internalization assay. Silencing of CIP4 (either

alone or in conjunction with other TOCA family members)
ually defined cell-cell junction areas used tomeasure the FRET:CFP ratio range

or each cell-cell contact, data were normalized to the FRET/CFP ratio value at

ent from three experiments). *p < 0.05; **p < 0.01, t test.

timulated with EGF and stained with the anti-Vinculin antibodies or phalloidin to

ntal Cell 30, 553–568, September 8, 2014 ª2014 Elsevier Inc. 557
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Figure 3. Fn Adhesion Rescues Delayed Scattering and Reduces Junctional Actomyosin Contractility

(A) Control and CIP4-KD MCF10A cells plated on plastic (uncoated) or Fn for 24 hr, EGF starved, and stimulated with EGF to induce scattering. Representative

images are shown. Graph on the left represents the time to reach complete scattering (***p < 0.001, compared to scr-CTR cells). Error bars indicate mean ± SEM.

Scale bar represents 20 mm.

(B) Cell scattering quantified as described in Figure 2D. Left: exemplar tracks of individual cells undergoing scattering. Right: the accumulated scattering distance

is expressed as the percentage of scr-CTR (n = 25 per experiment, three experiments). Error bars indicate mean ± SEM. **p < 0.01, compared to scr-CTR

MCF10A cells.

(C) Left panels: lysate of scr-CTR and CIP4-KD#1 MCF10A cells plated on Fn were subjected to IB for indicated antibodies. Right panels: EGF-deprived scr-CTR

and CIP4-KD#1 MCF10A cells plated on Fn were stimulated with EGF and stained with the anti-pMLC antibodies or phalloidin to detect F-actin (see also Figure

S4B). Arrows indicate pMLC at junctions. ***p < 0.01, compared to scr-CTR MCF10A cells. Scale bar represents 25 mm. h, hours.
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Figure 4. CIP4 Is Required for the Internali-

zation of E-cadherin on EGF Stimulation

(A) IB of lysates of scr-CTR or MCF10A cells

devoid of TOCA family members and grown in

complete medium to detect E-cadherin.

(B) Internalization of E-cadherin-GFP on acute

EGF stimulation of EGF-starved MCF10A cells.

Still images are from Movie S4. Scale bar repre-

sents 10 mm.

(C) Surface biotinylation of MCF10A cells. Inter-

nalization of E-cadherin on stimulation with EGF

for up to 120 min at 37�C. Surface levels of bio-

tinylated E-cadherin are shown for unstimulated

cells maintained at 4�C (M, membrane) and after

washing with MESNA buffer (�, negative control).

IBs in the lower panel showE-cadherin and actin in

cell lysates used to perform biotin pulldowns.

(D) Quantification of internalized E-cadherin from

the biotinylation assay expressed as percentage

of cell-surface E-cadherin levels (n = 3 experi-

ments). Error bars indicate mean ± SEM.

(E) Internalization of surface-labeled E-cadherin

using anti-E-cadherin (HECD-1) antibodies. Rela-

tive levels of internalized E-cadherin are quantified

by evaluating total fluorescence intensity normal-

ized for cell number and field area. Error bars

indicate mean ± SEM. Scale bars represent 20 mm.
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significantly decrease EGF-induced internalization of E-cadherin

(Figures 4C and 4D).

To corroborate these latter observations, we also used HECD-

1, an antibody that recognizes the extracellular domain of E-cad-

herin, to monitor EGF-induced internalization of E-cadherin

(Figure 4E and Figure S6A). EGF induced a rapid internalization

of E-cadherin, which was impaired by removal of CIP4. The

extent and kinetics of E-cadherin endocytosis measured using

the HECD-1 antibody were similar to those obtained using the

biotinylation assay (compare Figure 4E with Figure 4D).

Thus, CIP4 is required to promote EGF-induced E-cadherin

endocytosis.

Collectively, our data indicate that CIP4 is a pivotal regulator

of epithelial morphogenetic events that controls the amount

of junctional E-cadherin through endocytosis and growth-fac-

tor-induced, cell-adhesion-dependent actomyosin contractility,

thereby coordinating cell-cell adhesion in response to soluble

stimuli.
Developmental Cell 30, 553–568, S
CIP4 Interacts with E-cadherin and
SRC in MCF10A Cells after EGF
Stimulation
To gain clues as to the molecular mecha-

nisms underlying the role of CIP4 in EGF-

dependent endocytosis of E-cadherin,

we first assessed whether CIP4 intracel-

lular localization was affected by EGF

stimulation. CIP4 is primarily distributed in

the cytoplasm in EGF-deprived MCF10A

cells (Figure 5A). EGF stimulation pro-

moted CIP4 relocalization to membrane

ruffles (Figure 5A) and cell junctions,

where it partially colocalized with E-cad-

herin, suggesting that the two proteins
mightassociate inagrowth-factor-dependentmanner (Figure5A).

Consistently, CIP4 and E-cadherin coimmunoprecipitated, and

this interactionwas enhancedby stimulationwithEGF (Figure 5B).

Another important regulator of E-cadherin signaling, traf-

ficking, and actomyosin contractility is the non-RTK SRC (An-

dreeva et al., 2014; Avizienyte et al., 2002; Palacios et al.,

2005). As previously shown (Canel et al., 2010), pharmacological

inhibition of SRC family activity with PP2 or Dasatinib (Fig-

ure S6B) significantly impaired E-cadherin endocytosis (Fig-

ure S6C) and EGF-induced cell scattering (Figure S6D), both in

control and CIP-KD cells. SRC has been shown to interact with

and phosphorylate CIP4 (Dombrosky-Ferlan et al., 2003; Hu

et al., 2011). Thus, we tested whether CIP4, in addition to inter-

acting with E-cadherin, also interacts with SRC. We observed

that endogenous SRC and CIP4 coimmunoprecipitated and

that their interaction was enhanced by EGF stimulation (Fig-

ure 5B), suggesting that CIP4 enters into a complex with E-cad-

herin and SRC. Removal of CIP4 reduced the amount of
eptember 8, 2014 ª2014 Elsevier Inc. 559
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Figure 5. EGF Induces Redistribution of CIP4 to Junctions and Its Interaction with E-cadherin and SRC in MCF10A Cells

(A) EGF-deprivedMCF10A cells were stimulated with EGF for 5min at 37�C, fixed, and stained to detect CIP4 (red) and either F-actin or E-cadherin (green). Insets

are higher magnification of boxed areas. White arrows indicate peripheral and junctional plasma membrane. Scale bar represents 20 mm.

(B) MCF10A cells were EGF starved for 18 hr andmock treated (�) or stimulated with EGF (+) for 30min at 37�C. Total cell lysates (1mg) were immunoprecipitated

with anti-CIP4 antibody or irrelevant immunoglobulin G (IgG). Total cell lysates (60 mg) and immunoprecipitates (IPs) were subjected to IB with the indicated

antibodies.

(C) Lysates of control (scr-CTR) or CIP4-KD MCF10A cells, treated as in (B), were immunoprecipitated with anti-SRC antibody. IPs were subjected to IB with the

indicated antibodies. Relative intensity of the phospho-SRC (p-SRC) signal with respect to total SRC is shown (n = 3).

(legend continued on next page)
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E-cadherin coimmunoprecipitating with SRC on EGF stimulation

and inhibited EGF-induced SRC activation (Figure 5C). Thus,

CIP4 enters into and promotes the formation of an EGF-depen-

dent E-cadherin/SRC complex and controls SRC activation. We

further characterized the nature of the SRC/CIP4 interaction us-

ing in vitro binding experiments. We found that the SH3 domain

of SRCwas sufficient to pull downCIP4 (Figure 5D), andwe iden-

tified a potential SH3 binding site of CIP4 encompassing amino

acids 485–505. Deletion of the central P492 and P493 residues

(DP-CIP4) reduced the binding of CIP4 to the SRC SH3 domain

(Figure 5D). Notably, the interaction between the SRC SH3

domain and CIP4 was detectable only after stimulation with

EGF, confirmingcoimmunoprecipitation experiments (Figure5E).

To demonstrate the functional relevance of the CIP4/SRC inter-

action, we reconstituted CIP4-KD cells either with small inter-

fering RNA (siRNA)-resistant wild-type (WT)-CIP4 or DP-CIP4

mutant. Only the expression of WT-CIP4, but not of DP-CIP4,

restored the cell compaction (data not shown) and scattering

phenotypes (Figure 5F and Movie S6).

CIP4 Facilitates TGF-b1-Induced Mesenchymal
Morphological Conversion of MCF10A Cells
Endocytosis of E-cadherin also occurs during TGF-b1-induced

EMT (Janda et al., 2006). TGF-b1 promotes permanent loss of

cell adhesion by negatively regulating E-cadherin expression

and by modulating dynamin-dependent endocytosis (Ogata

et al., 2007). We thus tested whether CIP4 is involved in TGF-

b1-induced scattering and junctional remodeling. Depletion of

CIP4 inhibited both of these TGF-b1-induced effects (Figure 6A).

To assess whether CIP4 is required for activation of the TGF-b1-

dependent transcriptional program that underlies EMT, we

measured messenger RNA (mRNA) levels of the transcription

factors, Snail1 and Snail2. The expression of these transcription

factors was, as expected, regulated by TGF-b1, and CIP4

removal had only a marginal effect on (Snail2) or delayed (Snail1)

expression (Figure 6B). Since TGF-b1 also controls E-cadherin

expression and promotes an E-cadherin/N-cadherin switch (Pei-

nado et al., 2004), we next determined the total levels of these

junctional proteins. While removal of CIP4 did not affect E-cad-

herin levels, N-cadherin expression was reduced in untreated

CIP4-KD cells compared to control cells (Figure 6B and 6C).

However, stimulation with TGF-b1 increased N-cadherin expres-

sion in both cell types to a similar extent, further suggesting that

CIP4 depletion does not affect TGF-b1 signaling (Figure 6C). We

therefore assessed whether removal of CIP4 influences TGF-b1-

induced E-cadherin endocytosis and found that this response

was delayed in CIP4-KD cells (Figures 6E and 6F). Notably,

TGF-b1 also caused a transient elevation of CIP4 mRNA that
(D) Lysate of EGF-stimulated WT- or DP-CIP4-293T cells stimulated with EGF (10

bound to bead of SRC. Input and bound material were immunoblotted with the an

buffer alone (no lysate).

(E) EGF-deprived flag-tagged WT- or DP-CIP4-293T cells were stimulated with EG

SH3 domain of SRC and immobilized on glutathione beads. Input and bound ma

(F) scr-CTR and CIP4-KD #1MCF10A were lentivirally infected with either an empt

(resCIP4-DP) mutants. Left panels: still images of lentivirally infected MCF10A ce

Right panels: CIP-WT and CIP4-DP were detected by IB with the indicated a

of accumulated scattering cell distance with respect to the distance of control

mean ± SEM. **p < 0.01, compared to scr-CTR MCF10A cells, t test.

See also Movie S6.
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was accompanied by an increase in CIP4 protein (Figures 6C

and 6D), at a time coincident with the onset of cell scattering.

CIP4 depletion was also accompanied by impaired TGF-b1-

dependent SRC activation, which was short lived compared

with controls, suggesting that the CIP4-SRC axis is also involved

in TGF-b1-induced cell scattering (Figure 6G).

Finally, since EMT is invariably associated with increased

migratory and invasive properties, we pretreated control and

CIP4-KD cells with TGF-b1 and determined their invasive ability

through Matrigel-coated transwells. Removal of CIP4 signifi-

cantly impaired TGF-b1-induced invasion in both the presence

and the absence of EGF (Figure 6H). This result corroborates

the importance of CIP4 in the remodeling of junctional E-cad-

herin required for epithelial cell plasticity.

Deregulation of CIP4 in Human BC
The role of CIP4 in the control of cell cohesion and cell invasion

suggests that invasive human BCs might positively select

for elevated levels of this protein. To test this hypothesis,

we analyzed by immunohistochemistry (IHC) formalin-fixed

paraffin-embedded tissue microarrays (TMAs) of human BC us-

ing a specific anti-CIP4 antibody (Figure 7A; Figures S7A and

S7B). The level of CIP4 was significantly increased in clinically

aggressive, estrogen-receptor (ER)- and progesterone-receptor

(PgR)-negative and ERBB2-positive BCs (Figure 7B), and its

elevated expression was significantly associated with disease

relapse. Notably, in ER- and PgR-positive tumors, as well as in

ERBB2-negative tumors, which usually have a good prognosis,

elevated expression of CIP4 was still significantly associated

with disease recurrence (Figure 7C). Moreover, in grade 2 breast

tumors, which are associated with an intermediate risk of recur-

rence, CIP4 overexpression was associated with poor outcome

(Figure 7C). Multivariate analysis corroborated this finding

revealing that CIP4 expression is an independent predictor of

poor prognosis of disease relapse (Figure 7D). Although an

analysis of a larger cohort of primary, and possibly metastatic,

tumors is necessary to gain a complete picture of the clinical sig-

nificance of CIP4 overexpression, our TMA analysis provides

statistically significant evidence in support of our conclusion

that CIP4 is positively associated with highly aggressive, meta-

static, ERBB2-positive BCs.

CIP4 Is Required for ERBB2-Induced Invasive
Outgrowth of Mammary Epithelial Cells and Conversion
of Breast Ductal Carcinoma In Situ to Invasive
Carcinoma
To test whether CIP4 is involved in promoting invasive behavior

and local dissemination, we used various in vitro and in vivo
0 ng/ml) incubated with glutathione S-transferase (GST)- or GST-SH3 domain-

ti-CIP4 antibody. As control, GST-SH3 beads were also incubated with lysate

F for 30 min. Lysates were incubated with equimolar amounts of GST or GST-

terial were immunoblotted with the anti-CIP4 antibody.

y vector or with vector encoding siRNA-resistant WT-(resCIP4-WT) or DP-CIP4

lls induced to scatter by adding EGF are shown. Scale bar represents 100 mm.

bs. Cell scattering, quantified as in Figures 1G and 1H, is the percentage

cells (n = 55 cells per experiment in three experiments). Error bars indicate

ntal Cell 30, 553–568, September 8, 2014 ª2014 Elsevier Inc. 561
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Figure 6. CIP4 Facilitates TGF-b1-Induced Mesenchymal Morphological Conversion in MCF10A Cells

(A) Phase contrast images of scr-CTR and CIP4-KD#1 MCF10A cells treated with 5 ng/ml TGF-b1 or vehicle for 24 hr.

(B) Quantitative RT-PCR of the mRNA of indicated genes from scr-CTR and CIP4-KDMCF10A cells treated with TGF-b1 or vehicle (V). Data are the fold-increase

with respect to vehicle treatment (1.5 hr) for each cell sublines normalized for the 18S mRNA levels. h, hr.

(C) Lysates of scr-CTR and CIP4-KD MCF10A cells treated with TGF-b1 (5 ng/ml) or vehicle (V) were subjected to IB with the indicated antibodies. The relative

intensity of the N-cadherin with respect to vehicle-treated scr-CTR cells was quantified from three experiments. High exposure (H.exp) and low exposure (L.exp)

of CIP4 IB are indicated.

(D) Total RNA was extracted from control MCF10A cells treated with TGF-b1 or vehicle, and CIP4 gene expression was measured by quantitative RT-PCR as

described previously.

(E) Internalization of surface-labeled E-cadherin using an anti-E-cadherin (HECD-1) antibody.

(F) Relative levels of internalized E-cadherin were quantified by evaluating total fluorescence intensity and normalized with respect to cell number and field area

(in square microns).

(G) Total cell lysates of scr-CTR and CIP4-KD MCF10A cells treated with TGF-b1 (5 ng/ml) or vehicle (V) for the indicated time were subjected to IB with the

indicated antibodies.

(H) Invasion assay of scr-CTR and CIP4-KDMCF10A cells pretreated with TGF-b1 (5 ng/ml) or vehicle for 24 hr, done as described in Figure 1I. Cell invasion is the

percentage of invasive cells with respect to control cells. *p < 0.05; **p < 0.01 (compared to scr-CTR MCF10A cells pretreated with vehicle), t test. Images of

invaded cells are shown. Scale bar represents 100 mm.

Error bars indicate mean ± SEM.
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model systems of BC invasion. CIP4 levels are elevated in

aggressive ERBB2-positive tumors. Thus, we generated stable

CIP4-KD MCF10A cells expressing inducible ERBB2 (MCA-

F10A.ERBB2; Muthuswamy et al., 2001). Removal of CIP4 did

not affect ERBB2 levels or activation; rather, it slightly increased

ERBB2 phosphorylation after stimulation with the dimerizer

AP1510 (Figure 8A). However, CIP4 removal diminished Matrigel

invasion by more than 3-fold in response to ERBB2 activation

(Figure S8A).
562 Developmental Cell 30, 553–568, September 8, 2014 ª2014 Else
Next, we tested the effect of CIP4 depletion on invasion of

MCF10A.ERBB2 cells using 3D basement using membrane

overlay assays. Untreated MCF10A.ERBB2 cells formed

acini with disrupted (multiacinar) morphology (Figure 8B).

Following activation of either ERBB2 or TGF-b1 receptors,

MCF10A.ERBB2 cells extended rare and poorly invasive protru-

sions, which became more frequent and highly invasive on

concomitant stimulation of both receptors (Figure 8B). Removal

of CIP4 robustly prevented the formation of protrusions in
vier Inc.
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Figure 7. Deregulation of CIP4 in Human BC

(A) CIP4 expression was measured by IHC on TMA. Example of CIP4 score assignment: CIP4 high expression was defined when tumors display an expression

score >1. In tumor tissues, the IHC signals were associated with the tumor cell and not with the stroma.

(B andC) Correlation of CIP4 expression with clinicopathological parameters. The number of scored cases is lower than the total number of cases (349) since (1) in

some cases, individual cores detached from the slides during the manipulations and (2) clinical information was not available for all patients. G2, grade 2.

(D) CIP4 overexpression is predictive of high risk of any breast-related event. Any Event, locoregional relapse, distant metastasis, contralateral BC, or death for

BC; Distant Relapse, distant metastasis.
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single-agent-treated cells and severely reduced invasive growth

of activated MCF10A.ERBB2 in the presence of TGF-b1. In the

absence of stimuli, CIP4 depletion had no obvious effects on

acini formation and morphology or growth rates (Figure 8B;

data not shown). We also stably silenced CIP4 in HCC-1954

cells, which are poorly differentiated, highly metastatic ERBB2-

positive BC cells (Gazdar et al., 1998) that display elevated
Developme
endogenous levels of CIP4 (Figure S8B). Removal of CIP4 in

these cells increased cell compaction (Figures S8C and S8D)

and reduced cell invasion (Figure S8E).

Finally, we investigated whether CIP4 is required for the initial

local dissemination, invasion, and conversion from a DCIS to

IDC. To this end, we stably removed CIP4 in an MCF10A cell de-

rivative, MCFA10.DCIS.com (Figure 8C). These cells have been
ntal Cell 30, 553–568, September 8, 2014 ª2014 Elsevier Inc. 563
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Figure 8. CIP4 Is Required for ERBB2-Induced Invasive Outgrowth in Mammary Epithelial Cells and DCIS-to-IDC Conversion In Vivo

(A) Lysates of lentivirally infected scr-CTR or CIP4-KD#2 MCF10A.ERBB2 cells were immunoblotted with the indicated antibodies. ERBB2 immunoprecipitates

(IPs) were immunoblotted with anti-tyrosine antibodies.

(B) Phase contrastmicrograph of 7-day acinar structures of scr-CTR andCIP4-KDMCF10A.ERBB2 cells in the presence of TGF-b1 (5 ng/ml), AP1510 (100 nM), or

both TGF-b1 (5 ng/ml) and AP1510 (100 nM). Scale bars represent 400 mm. The number of invasive acini is expressed as percentage of total acini ± SEM. (n = 30,

three experiments). n.d., not determined.

(C) Lentivirally infected scr-CTR or CIP4-KD#2 MCF10.DCIS.com cells were subjected to IB with the indicated antibodies.

(D) An equal number of scr-CTR andCIP4-KD0MCF10.DCIS.comcells were plated sparsely in completemedium. Phase contrast images are shown. Right panels

show amagnified view of the boxed areas shown in left panels. Scale bar represents 250 mm. The percentage of single cells or clusters relative to the total number

of MCF10.DCIS.com cells was quantified by counting at least 300 cells per genotype in three independent experiments. **p < 0.01, compared to scr-CTR cells in

clusters, t test. Error bars indicate mean ± SEM.

(E) Phase contrast micrograph of 9-day acinar structures of scr-CTR and CIP4-KD MCF.DCIS.com cells in the absence or presence of HGF (20 ng/ml).

Scale bars represent 400 mm. Quantification of invasive structures per cell acini is expressed as a percentage of total acini (n = 52 in two independent

experiments).

(F) scr-CTR and CIP4-KD MCF10.DCIS.com cells were injected subcutaneously into NSG mice. Histological (hematoxylin and eosin; H&E) and immunohisto-

chemical analyses of scr-CTR and CIP4-KD MCF10.DCIS.com xenografts were performed at 1 and 3 weeks after cell injection. H&E micrographs are shown at

two different magnifications. The loss of aSMA-positive myoepithelial layers in control xenograft indicates DCIS-to-IDC conversion. Representative images of

three experiments, where n = 5 mice per experimental condition. Scale bars represent 100 mm.
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characterized as an experimental model of human DCIS, which

forms comedo DCIS-like lesions that spontaneously progress

to IDC (Hu et al., 2008; Miller et al., 2000). Depletion of CIP4

in these cells had no effect on cell growth (data not shown) but

promoted cell compaction (Figure 8D), impaired hepatocyte

growth factor (HGF)-induced invasive outgrowth into a 3D

basement membrane matrix (Figure 8E), and severely delayed

the DCIS-to-IDC conversion in immunocompromised mice
564 Developmental Cell 30, 553–568, September 8, 2014 ª2014 Else
(Figure 8F). Indeed, MCFA10.DCIS.com control cells formed a

typical in situ carcinoma surrounded by a layer of alpha smooth

muscle actin (aSMA)-positive myoepithelial cells that, however,

was lost 3 weeks after injection, indicative of the acquisition

of a highly invasive phenotype (Figure 8F). Depletion of CIP4

impaired this DCIS-to-IDC conversion (Figure 8F). Thus, CIP4

is required for invasion of ERBB2-positive BC, and its removal

delays DCIS-to-IDC conversion.
vier Inc.
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DISCUSSION

Our findings unveil a specific, nonredundant role of the TOCA

family member, CIP4, in the regulation of cell-cell junction sta-

bility and cell-ECM adhesion during mammalian epithelial

morphogenetic events. Endocytosis is a coordinated, spatio-

temporal process that requires deformation of the plasma

membrane. Through their SH3 and F-BAR domains, members

of the TOCA family have the potential to act in a diverse range

of internalization processes. Indeed, all the members of this

family have been shown to promote actin assembly and to

regulate CME, in a redundant fashion, in different model sys-

tems (Fricke et al., 2009; Giuliani et al., 2009; Ho et al., 2004).

However, there is growing evidence for unique functions of

individual TOCA family members. For example, using CIP4

knockout mice, a recent study revealed a unique role of CIP4

in macropinocytosis, indicating that CIP4 is not restricted to

CME but also affects other modes of endocytosis (Feng et al.,

2010). In addition, roles of CIP4 in cell migration have recently

been described in neuronal (Saengsawang et al., 2012) and B

lymphoma cells (Malet-Engra et al., 2013). CIP4 has also been

shown to regulate the formation of podosomes in primary mac-

rophages (Linder et al., 2000) and invadosomes in breast tumor

cells (Hu et al., 2011; Pichot et al., 2010). Together, these

studies point to a critical role of CIP4 as a regulator of cell inva-

sion. Our findings support, in part, this notion by establishing

that CIP4 controls migration of epithelial cells indirectly by

modulating cell cohesion through its ‘‘canonical’’ endocytic

function rather than by impairing migratory parameters. This en-

docytic role is uniquely exerted by CIP4 and not by the other

TOCA family members, despite their involvement in CME (Itoh

et al., 2005; Wu et al., 2010), indicating that the type of cargo

being internalized likely determines functional specificity. It is

noteworthy that we found that EGF stimulation promotes the re-

localization of CIP4 to E-cadherin junctions, where internaliza-

tion of this latter protein is initiated. We also observed that

EGF causes the relocalization of the protein to extending lamel-

lipodia and ruffles along the protrusive leading edges. Hence,

CIP4 might be critical to coordinate junction disassembly,

through endocytosis, with the formation of migratory protru-

sions, ultimately enhancing motility and cell invasion. This latter

contention is consistent with our observation that the expres-

sion of CIP4, but not TOCA-1 or FBP17, is increased in invasive

BC cell lines in comparison with weakly or noninvasive BC cell

lines (Hu et al., 2011; Pichot et al., 2010).

Several mechanisms that regulate the availability of E-cad-

herin for the formation of cell-cell junctions have been proposed.

A focal event is the endocytosis and sorting of internalized

E-cadherin to either degradation or recycling pathways (Baum

nd Georgiou, 2011). In this respect, Rho family GTPases—and

most notably, CDC42—regulate not only the formation of AJs

but also their dynamic remodeling during tissue rearrangement

by controlling multiple steps of E-cadherin trafficking (Harris

and Tepass, 2008). In the neuroectodermal epithelium of

Drosophila, for example, CDC42 and PAR proteins were shown

to regulate the trafficking of AJ components and apical polarity

proteins tomaintain AJ stability in the face of cell rearrangements

(Harris and Tepass, 2008). In this system, CDC42, together with

the PAR complex, is required to decrease the endocytic uptake
Developme
of apical proteins and to promote the progression of apical cargo

from the early to the late endosome. Conversely, in the devel-

oping pupal notum or dorsal thorax of the fly, CDC42 functions

with PAR6/aPKC and CIP4/N-WASP to regulate early events in

E-cadherin endocytosis (Georgiou et al., 2008; Leibfried et al.,

2008). Therefore, in most epithelial tissues of the fly, the apical

polarity complex CDC42–PAR6–aPKC seems to induce the local

activation of TOCA family proteins to drive endocytosis of AJ

material and the recycling of E-cadherin complexes. In mam-

mary epithelial cells, however, CIP4 is fully dispensable in medi-

ating the activation of a CDC42/N-WASP, a function likely

fulfilled by the other members of the family. CIP4 is, instead,

essential for the formation of a macromolecular complex that

includes E-cadherin and SRC. SRC is a central regulator of

signaling downstream of EGFR and has been shown to regulate

EMT by disrupting AJs (Canel et al., 2013). Mechanistically, SRC

can alter E-cadherin trafficking by redirecting E-cadherin from a

recycling pathway to a lysosomal-targeting pathway. This re-

routing can be achieved by direct, SRC-mediated tyrosine phos-

phorylation of E-cadherin cytoplasmic tails, which marks E-cad-

herin for ubiquitination and subsequent delivery to lysosomal

degradation (Fujita et al., 2002). However, we showed that

CIP4 removal, despite diminishing EGF-induced activation of

SRC and its association with E-cadherin, does not affect E-cad-

herin phosphorylation (data not shown) or its rate of degradation,

suggesting that CIP4 is not essential for this late trafficking step.

CIP4 may, instead, act during the early events of endocytosis,

where its ability to curve the plasma membrane might facilitate

the invagination of newly formed, presumably clathrin-coated,

pits. How SRC fits into this scenario remains, however, to be

firmly established. One pathway that is activated downstream

of SRC involves ROCK kinase and leads to the regulation of acto-

myosin-dependent junctional contractility (Andreeva et al.,

2014), Furthermore, evidence is accumulating of tight interplay

between actomyosin contractility and E-cadherin endocytosis

during epithelial morphogenesis (Levayer et al., 2011). Within

this context, CIP4 may serve as a key molecular hub in intercon-

necting the two processes, which ultimately affect epithelial cell

cohesion, motility, and invasion.

In summary, while further work is required to address the

precise molecular mechanisms underlying CIP4 function in

cell:ECMadhesion, our data establish the relevance of this endo-

cytic F-BAR-containing protein in mediating, through regulation

of cell cohesion, epithelial cell motility and invasive ability. It is

therefore not surprising that CIP4 elevation is associated with

increased disease relapse of ERBB2-positive BC. In this setting,

high levels of CIP4 may have been selected to reduce cell cohe-

sion and cell-cell interaction and promote dissemination.

Remarkably, this prometastatic role of CIP4 is not limited to

this subset of BC, pointing to a key and essential role of this

F-BAR protein in the regulation of BC metastasis.

EXPERIMENTAL PROCEDURES

Cell Motility and Adhesion Assays

Random migration of MCF10A cells was monitored under normal growth con-

ditions. Briefly, cells were seeded (13 104 cells per well) in a six-well plate and

maintained in completemedium for 2 days. Cell motility wasmonitored at 37�C
over a 24 hr period. Pictures were taken every 15 min from 20 positions using

an Olympus ScanR system with a Hamamatsu ER camera. Cell tracking was
ntal Cell 30, 553–568, September 8, 2014 ª2014 Elsevier Inc. 565
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performed using the Manual Tracking Tool and the Chemotaxis and Migration

Tool ImageJ software plug-ins.

For EGF-induced MCF10A cell scattering, cells (1 3 105 cells per well in a

six-well plate) were EGF starved for 24 hr and stimulated with 100 ng/ml

EGF. Scattering was monitored for 24 hr.

Cell attachment to the substrate was measured using the xCELLigence sys-

tem (Roche). Briefly, a 96-well plate with microelectronic sensors was coated

with 100 mg/ml poly-D-lysine, 10 mg/ml Fn, 5 mg/ml vitronectin, or 10 mg/ml lam-

inin at 4�C and incubated 1 hr with heat-inactivated 5% BSA prior to seeding

cells.

Statistical Analysis

For cell biology: differences between experimental groups were examined for

statistical significance using the paired Student’s t test (*p < 0.05, **p < 0.01,

and ***p < 0.001). Data are expressed as mean ± SEM.

For TMA tumor sections: differences between experimental groups were

examined for statistical significance using paired Student’s t test. Where appli-

cable, dataare expressedasaverage±SEM.TMAdataanalysiswasperformed

using JMP 10.0 statistical software (SAS Institute). Association between CIP4

expression and clinicopathological parameters was evaluated using Pearson

chi-square test. For univariate and multivariate analyses, odds ratio and 95%

confidence intervals were obtained from the logistic regression model.

MTT Proliferation Assay

Cells were seeded at 1 3 103 cells per well in 96-well plates and cultured for

36 hr in complete medium before being washed with PBS, and 500 mg/ml

MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma-Al-

drich] was added to each well. After 2 hr of incubation at 37�C, the MTT solu-

tion was removed and 100 ml of DMSO was added to each well. Absorbance

was measured at 570 nm using a VICTOR3 V Multilabel Counter (PerkinElmer

model 1420).

E-cadherin Internalization

scr-CTR and CIP4-KD MCF10A cells were transfected with human E-cad-

herin-GFP using Amaxa Nucleofector (Lonza) and seeded (1 3 105) in

WillCo-dish glass-bottomed 22-mm-diameter dishes. After 24 hr, cells were

EGF starved for a further 24 hr before stimulating with 100 ng/ml EGF. E-cad-

herin-GFP internalization was then monitored for 4 hr at 37�C. Fluorescence
microscopy was performed on an UltraVIEW VoX (PerkinElmer) spinning

disk confocal unit, equipped with an EclipseTi inverted microscope (Nikon)

and a C9100-50 emCCD camera (Hamamatsu), and driven by Volocity soft-

ware (Improvision, PerkinElmer). GFP signals and differential interference

contrast images were acquired with a 603 oil immersion objective (NA, 1.4)

as z stacks (0.7 mm step).

For HECD-1 anti-E-cadherin internalization, cells were grown on glass cov-

erslips and EGF starved for 24 hr before experiments, which were performed

as described elsewhere (Paterson et al., 2003). Additional details are in the

Supplemental Experimental Procedures.

Surface Biotinylation Assays

The cell surface was labeled for 30 min on ice with 0.5 mg/ml biotin (EZ-Link

Sulfo-NH-SS-Biotin) in PBS, pH 7.4. After quenching with 0.15% glycine in

PBS, pH 7.4, for 5 min, cells were incubated in complete growth medium sup-

plemented with 100 ng/ml EGF at 37�C for 2 hr. At different time points, cells

were removed from the incubator, put on ice, washed with cold MESNA buffer

(150 mM NaCl, 1 mM EDTA, 0.2% BSA, 20 mM Tris-HCl, pH 8.6, 50 mM

MESNA) to remove cell surface biotin, and lysed. For surface E-cadherin level

determination, labeled cells were directly lysed after the quenching step

(designated as M). As a negative control (�), cells were directly treated with

MESNA buffer after the quenching step without incubation at 37�C. Biotin-
labeled proteins were then precipitated using streptavidin-agarose beads

and subjected to immunoblotting (IB) with the anti-E-cadherin antibody. Actin

levels were used to normalize input protein amounts between different condi-

tions and cell lines.

Internalization and Recycling Assays
125I-EGF surface level, internalization, and recycling assays were performed

exactly as described elsewhere (Sorkin and Duex, 2010).
566 Developmental Cell 30, 553–568, September 8, 2014 ª2014 Else
Internalization of total and active b1 integrin was assessed as in Roberts

et al. (2001).

Additional details are in the Supplemental Experimental Procedures.

FRET Microscopy and Analysis

EGF-deprived scr-CTR and CIP4-KD MCF10A cells microinjected with either

EcadTSModWT or EcadTSModDCyto constructs were stimulated with EGF

(100 ng/ml) to induce scattering. FRET imaging was performed on a

Delta Vision Elite system (Applied Precision) equipped with a Photometrics

CoolSNAP HQ2 CCD camera and an UPLSApo 603 (NA, 1.42) oil immersion

objective (Olympus). The system is coupled with an environmental chamber

maintained at 37�C in an atmosphere of 5% CO2. To monitor the biosensor

FRET changes, a ratiometric approach was used as described elsewhere

(Aoki and Matsuda, 2009) (see Supplemental Experimental Procedures for

details).

Wound Healing Assays

MCF10A scr-CTR and CIP4-KD cells were seeded at 5 3 105 cells per well in

six-well plates and cultured until a uniform monolayer had formed. The wound

area was made using a pipette tip and washed with PBS. The closure of the

wound was then monitored by time-lapse analysis over a 24 hr period, with

pictures taken every 5 min. Images were taken with an inverted microscope

Olympus ScanR using the 103 objective. The cell-free area was calculated

using ImageJ software.

Flow Cytometric Analysis

Expression of the integrins at the cell surface was analyzed by flow cytometry

as follows. Briefly, 53 105 were incubated with mouse anti-integrin a5b1 or b1

for 1 hr on ice and then incubated with the secondary antibody for 1 hr on ice.

After the incubation, cells were fixed with 4% paraformaldehyde for 10 min on

ice. Fluorescence-activated cell sorting data were acquired with the FACS-

Canto (Becton Dickinson) flow cytometer. Analysis was performed using

FlowJo version 4.6.2 (Treestar).

3D Morphogenesis of Mammary Epithelial Cells

The 3D morphogenesis assay was performed as described previously (Deb-

nath et al., 2003).

DCIS-to-IDC Conversion in Nonobese Diabetic/Severe Combined

Immunodeficiency Gamma Mice

All animal experiments were performed in accordance with national and inter-

national laws and policies. Mice were bred and housed under pathogen-free

conditions in our animal facilities at the Cogentech Consortium at the FIRC

Institute of Molecular Oncology Foundation and at the European Institute of

Oncology in Milan.

Scr-CTR and CIP4-KDMCF10.DCIS.com (100,000 cells) were injected sub-

cutaneously into 6- to 9-week-old female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ

mice—commonly known as nonobese diabetic/severe combined immunode-

ficiency (NOD SCID) gamma (NSG) mice—in 50% Matrigel (BD Biosciences)

as described elsewhere (Hu et al., 2008). One to 3 weeks later, xenografts

were measured using digital calipers, and tumor volume was calculated ac-

cording to the formula L 3 W2/2 = mm3. The tumors were excised, fixed in

4% phosphate-buffered formalin, and embedded in paraffin for IHC staining.

The Scan Scope XT device and the Aperio Digital pathology system software

(Aperio) were used to capture IHC images.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eight figures, and six movies and can be found with this article online at
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