76 research outputs found

    Reactive trityl derivatives: stabilised carbocation mass-tags for life sciences applications

    Get PDF
    The rational design of novel triarylmethyl (trityl)-based mass tags (MT) for mass-spectrometric (MS) applications is described. We propose a "pKR+ rule" to correlate the stability of trityl carbocations with their MS performance: trityls with higher pKR+ values ionise and desorb better. Trityl blocks were synthesised that have high pKR+ values and are stable in conditions of MS analysis; these MTs can be ionised by matrix as well as irradiation with a 337 nm nitrogen laser. 13C-Labelled tags were prepared for MS quantitation applications. Moreover, the tags were equipped with a variety of functional groups allowing conjugation with different functionalities within (bio)molecules to enhance the MS characteristics of the latter. The MS behaviour of model polycationic trityl compounds with and without the matrix was studied to reveal that poly-trityl clusters are always singly charged under the (MA)LDI-TOF conditions. Several peptide-trityl conjugates were prepared and comparisons revealed a beneficial effect of trityl tags on the conjugate detection in MS. Trityl compounds containing para-methoxy- and dimethylamine groups, as well as a xanthene fragment, showed considerable enhancement in MS detection of model peptides; thus they are promising tools for proteomic applications. Dimethoxytrityl derivatives allow one to distinguish between Arg- and Lys-containing peptides. Maleimido trityl derivatives are suitable for the efficient derivatisation of thiol-containing peptides in pyridine

    Deuterated Polyunsaturated Fatty Acids Reduce Oxidative Stress and Extend the Lifespan of C. elegans

    Get PDF
    Chemically reinforced essential fatty acids (FAs) promise to fight numerous age-related diseases including Alzheimer’s, Friedreich’s ataxia and other neurological conditions. The reinforcement is achieved by substituting the atoms of hydrogen at the bis-allylic methylene of these essential FAs with the isotope deuterium. This substitution leads to a significantly slower oxidation due to the kinetic isotope effect, inhibiting membrane damage. The approach has the advantage of preventing the harmful accumulation of reactive oxygen species (ROS) by inhibiting the propagation of lipid peroxidation while antioxidants potentially neutralize beneficial oxidative species. Here, we developed a model system to mimic the human dietary requirement of omega-3 in Caenorhabditis elegans to study the role of deuterated polyunsaturated fatty acids (D-PUFAs). Deuterated trilinolenin [D-TG(54:9)] was sufficient to prevent the accumulation of lipid peroxides and to reduce the accumulation or ROS. Moreover, D-TG(54:9) significantly extended the lifespan of worms under normal and oxidative stress conditions. These findings demonstrate that D-PUFAs can be used as a food supplement to decelerate the aging process, resulting in extended lifespan

    Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation.

    Get PDF
    Protein aggregation and abnormal lipid homeostasis are both implicated in neurodegeneration through unknown mechanisms. Here we demonstrate that aggregate-membrane interaction is critical to induce a form of cell death called ferroptosis. Importantly, the aggregate-membrane interaction that drives ferroptosis depends both on the conformational structure of the aggregate, as well as the oxidation state of the lipid membrane. We generated human stem cell-derived models of synucleinopathy, characterized by the intracellular formation of α-synuclein aggregates that bind to membranes. In human iPSC-derived neurons with SNCA triplication, physiological concentrations of glutamate and dopamine induce abnormal calcium signaling owing to the incorporation of excess α-synuclein oligomers into membranes, leading to altered membrane conductance and abnormal calcium influx. α-synuclein oligomers further induce lipid peroxidation. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling. Inhibition of lipid peroxidation, and reduction of iron-dependent accumulation of free radicals, further prevents oligomer-induced toxicity in human neurons. In summary, we report that peroxidation of polyunsaturated fatty acids underlies the incorporation of β-sheet-rich aggregates into the membranes, and that additionally induces neuronal death. This suggests a role for ferroptosis in Parkinson's disease, and highlights a new mechanism by which lipid peroxidation causes cell death

    Holographic interferometry in experimental mechanics

    No full text

    Deuteration protects asparagine residues against racemization

    No full text
    Racemization in proteins and peptides at sites of L-asparaginyl and L-aspartyl residues contributes to their spontaneous degradation, especially in the biological aging process. Amino acid racemization involves deprotonation of the alpha carbon and replacement of the proton in the opposite stereoconfiguration; this reaction is much faster for aspartate/asparagine than for other amino acids because these residues form a succinimide ring in which resonance stabilizes the carbanion resulting from proton loss. To determine if the replacement of the hydrogen atom on the alpha carbon with a deuterium atom might decrease the rate of racemization and thus stabilize polypeptides, we synthesized a hexapeptide, VYPNGA, in which the three carbon-bound protons in the asparaginyl residue were replaced with deuterium atoms. Upon incubation of this peptide in pH 7.4 buffer at 37 °C, we found that the rate of deamidation via the succinimide intermediate was unchanged by the presence of the deuterium atoms. However, the accumulation of the D-aspartyl and D-isoaspartyl-forms resulting from racemization and hydrolysis of the succinimide was decreased more than five-fold in the deuterated peptide over a 20 day incubation at physiological temperature and pH. Additionally, we found that the succinimide intermediate arising from the degradation of the deuterated asparaginyl peptide was slightly less likely to open to the isoaspartyl configuration than was the protonated succinimide. These findings suggest that the kinetic isotope effect resulting from the presence of deuteriums in asparagine residues can limit the accumulation of at least some of the degradation products that arise as peptides and proteins age

    Interferometry

    No full text
    corecore