9 research outputs found

    A role for talin in presynaptic function

    Get PDF
    Talin, an adaptor between integrin and the actin cytoskeleton at sites of cell adhesion, was recently found to be present at neuronal synapses, where its function remains unknown. Talin interacts with phosphatidylinositol-(4)-phosphate 5-kinase type Iγ, the major phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]–synthesizing enzyme in brain. To gain insight into the synaptic role of talin, we microinjected into the large lamprey axons reagents that compete the talin–PIP kinase interaction and then examined their effects on synaptic structure. A dramatic decrease of synaptic actin and an impairment of clathrin-mediated synaptic vesicle endocytosis were observed. The endocytic defect included an accumulation of clathrin-coated pits with wide necks, as previously observed after perturbing actin at these synapses. Thus, the interaction of PIP kinase with talin in presynaptic compartments provides a mechanism to coordinate PI(4,5)P2 synthesis, actin dynamics, and endocytosis, and further supports a functional link between actin and clathrin-mediated endocytosis

    Analyses of Fruit Flies That Do Not Express Selenoproteins or Express the Mouse Selenoprotein, Methionine Sulfoxide Reductase B1, Reveal a Role of Selenoproteins in Stress Resistance

    Get PDF
    Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with 75Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms

    Overexpression of Methionine-\u3ci\u3eR\u3c/i\u3e-Sulfoxide Reductases Has No Influence on Fruit Fly Aging

    Get PDF
    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antiox¬idant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under cal¬orie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on either corn meal or sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with similar function in antioxidant protein repair, have different effects on aging in fruit flies

    pH-Dependent Substrate Preference of Pig Heart Lipoamide Dehydrogenase Varies with Oligomeric State: Response to Mitochondrial Matrix Acidification

    Get PDF
    Cycling of intracellular pH has recently been shown to play a critical role in ischemia-reperfusion injury. Ischemia-reperfusion also leads to mitochondrial matrix acidification and dysfunction. However, the mechanism by which matrix acidification contributes to mitochondrial dysfunction, oxidative stress, and the resultant cellular injury has not been elucidated. We observe pH-dependent equilibria between monomeric, dimeric, and a previously undescribed tetrameric form of pig heart lipoamide dehydrogenase (LADH), a mitochondrial matrix enzyme. Dynamic light scattering studies of native LADH in aqueous solution indicate that lowering pH favors a shift in average molecular mass from higher oligomeric states to monomer. Sedimentation velocity of LADH entrapped in reverse micelles reveals dimer and tetramer at both pH 5.8 and 7.5, but monomer was observed only at pH 5.8. Enzyme activity measurements in reverse Aerosol OT micelles in octane indicate that LADH dimer and tetramer possess lipoamide dehydrogenase and diaphorase activities at pH 7.5. Upon acidification to pH 5.8 only the LADH monomer is active and only the diaphorase activity is ob¬served. These results indicate a correlation between pH-dependent changes in the LADH reaction specificity and its oligomeric state. The acidification of mitochondrial matrix that occurs during ischemia-reperfusion injury is sufficient to alter the structure and enzymatic specificity of LADH, thereby reducing mitochondrial defenses, increasing oxidative stress, and slowing the recovery of energy metabolism. Matrix acidification may also disrupt the quaternary structure of other mitochondrial protein complexes critical for cellular homeostasis and survival

    Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models

    No full text
    Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to crosslink actin microfilaments into higher order structures have been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and of CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the significant regenerative potential of injured glomeruli and that targeting the oligomerization cycle of dynamin represents an attractive potential therapeutic target to treat CKD
    corecore