8 research outputs found

    Addressing the environmental, community and health impacts of resource development: Challenges across scales, sectors and sites

    Get PDF
    Work that addresses the cumulative impacts of resource extraction on environment, community, and health is necessarily large in scope. This paper presents experiences from initiating research at this intersection and explores implications for the ambitious, integrative agenda of planetary health. The purpose is to outline origins, design features, and preliminary insights from our intersectoral and international project, based in Canada and titled the “Environment, Community, Health Observatory” (ECHO) Network. With a clear emphasis on rural, remote, and Indigenous communities, environments, and health, the ECHO Network is designed to answer the question: How can an Environment, Community, Health Observatory Network support the integrative tools and processes required to improve understanding and response to the cumulative health impacts of resource development? The Network is informed by four regional cases across Canada where we employ a framework and an approach grounded in observation, “taking notice for action”, and collective learning. Sharing insights from the foundational phase of this five-year project, we reflect on the hidden and obvious challenges of working across scales, sectors, and sites, and the overlap of generative and uncomfortable entanglements associated with health and resource development. Yet, although intersectoral work addressing the cumulative impacts of resource extraction presents uncertainty and unresolved tensions, ultimately we argue that it is worth staying with the trouble

    Addressing the environmental, community and health impacts of resource development: Challenges across scales, sectors and sites

    Get PDF
    Work that addresses the cumulative impacts of resource extraction on environment, community, and health is necessarily large in scope. This paper presents experiences from initiating research at this intersection and explores implications for the ambitious, integrative agenda of planetary health. The purpose is to outline origins, design features, and preliminary insights from our intersectoral and international project, based in Canada and titled the “Environment, Community, Health Observatory” (ECHO) Network. With a clear emphasis on rural, remote, and Indigenous communities, environments, and health, the ECHO Network is designed to answer the question: How can an Environment, Community, Health Observatory Network support the integrative tools and processes required to improve understanding and response to the cumulative health impacts of resource development? The Network is informed by four regional cases across Canada where we employ a framework and an approach grounded in observation, “taking notice for action”, and collective learning. Sharing insights from the foundational phase of this five-year project, we reflect on the hidden and obvious challenges of working across scales, sectors, and sites, and the overlap of generative and uncomfortable entanglements associated with health and resource development. Yet, although intersectoral work addressing the cumulative impacts of resource extraction presents uncertainty and unresolved tensions, ultimately we argue that it is worth staying with the trouble

    Chronic scrotal content pain: the experiences of patients undergoing microsurgical spermatic cord denervation

    No full text
    Background: Chronic scrotal content pain, sometimes referred to as chronic orchialgia, is a common urological condition that gives rise to persistent and often severe painful stimuli to the scrotum and surrounding structures. Despite its relative commonality, accounting for over 2% of urological visits, chronic scrotal content pain is complex to manage and patients may be required to access multiple providers and undergo invasive procedures, including microsurgical spermatic cord denervation (MSCD) surgery. Objective: The objective of this study was to understand the experiences and perspectives of persons with chronic scrotal content pain and accessing MSCD surgery. Design: An exploratory qualitative design, guided by interpretive description and integrated knowledge translation, was adopted. Methods: We conducted in-depth qualitative interviews with six patients with chronic scrotal content pain who underwent MSCD surgery in a surgical center in Western Canada. Data were analyzed thematically. Results: Analysis of the study data resulted in three core themes: living with chronic scrotal content pain, quality of life, and MSCD procedure and outcomes. We highlight the debilitating nature of pain and the broad impacts upon health, quality of life, and social functioning. Participants described how MSCD surgery offered an effective solution for persistent and debilitating pain. For the participants, MSCD surgery offered hope and the chance to regain their normality. Conclusion: For those with chronic scrotal content pain, access to a pain specialist, along with the adoption of a biopsychosocial approach to pain and early access to MSCD surgery, may improve patient experiences and outcomes. Considering the high prevalence of urological pain, greater interdisciplinary care is needed in order to support more effective and timely management

    In vivo anti-V-ATPase antibody treatment delays ovarian tumor growth by increasing antitumor immune responses

    No full text
    Tumor acidity is the key metabolic feature promoting cancer progression and is modulated by pH regulators on a cancer cell\u27s surface that pump out excess protons/lactic acid for cancer cell survival. Neutralizing tumor acidity improves the therapeutic efficacy of current treatments including immunotherapies. Vacuolar-ATPase (V-ATPase) proton pumps encompass unique plasma membrane-associated subunit isoforms, making this molecule an important target for anticancer therapy. Here, we examined the in vivo therapeutic efficacy of an antibody (a2v-mAB) targeting specific V-ATPase-\u27V0a2\u27 surface isoform in controlling ovarian tumor growth. In vitro a2v-mAb treatment inhibited the proton pump activity in ovarian cancer (OVCA) cells. In vivo intraperitoneal a2v-mAb treatment drastically delayed ovarian tumor growth with no measurable in vivo toxicity in a transplant tumor model. To explore the possible mechanism causing delayed tumor growth, histochemical analysis of the a2v-mAb-treated tumor tissues displayed high immune cell infiltration (M1-macrophages, neutrophils, CD103+ cells, and NK cells) and an enhanced antitumor response (iNOS, IFN-y, IL-1α) compared to control. There was marked decrease in CA-125-positive cancer cells and an enhanced active caspase-3 expression in a2v-mAb-treated tumors. RNA-seq analysis of a2v-mAb tumor tissues further revealed upregulation of apoptosis-related and toll-like receptor pathway-related genes. Indirect coculture of a2v-mAb-treated OVCA cells with human PBMCs in an unbuffered medium led to an enhanced gene expression of antitumor molecules IFN-y, IL-17, and IL-12-A in PBMCs, further validating the in vivo antitumor responses. In conclusion, V-ATPase inhibition using a monoclonal antibody directed against the V0a2 isoform increases antitumor immune responses and could therefore constitute an effective treatment strategy in OVCA

    In vivo

    No full text
    Tumor acidity is the key metabolic feature promoting cancer progression and is modulated by pH regulators on a cancer cell\u27s surface that pump out excess protons/lactic acid for cancer cell survival. Neutralizing tumor acidity improves the therapeutic efficacy of current treatments including immunotherapies. Vacuolar-ATPase (V-ATPase) proton pumps encompass unique plasma membrane-associated subunit isoforms, making this molecule an important target for anticancer therapy. Here, we examined the in vivo therapeutic efficacy of an antibody (a2v-mAB) targeting specific V-ATPase-\u27V0a2\u27 surface isoform in controlling ovarian tumor growth. In vitro a2v-mAb treatment inhibited the proton pump activity in ovarian cancer (OVCA) cells. In vivo intraperitoneal a2v-mAb treatment drastically delayed ovarian tumor growth with no measurable in vivo toxicity in a transplant tumor model. To explore the possible mechanism causing delayed tumor growth, histochemical analysis of the a2v-mAb-treated tumor tissues displayed high immune cell infiltration (M1-macrophages, neutrophils, CD103+ cells, and NK cells) and an enhanced antitumor response (iNOS, IFN-y, IL-1α) compared to control. There was marked decrease in CA-125-positive cancer cells and an enhanced active caspase-3 expression in a2v-mAb-treated tumors. RNA-seq analysis of a2v-mAb tumor tissues further revealed upregulation of apoptosis-related and toll-like receptor pathway-related genes. Indirect coculture of a2v-mAb-treated OVCA cells with human PBMCs in an unbuffered medium led to an enhanced gene expression of antitumor molecules IFN-y, IL-17, and IL-12-A in PBMCs, further validating the in vivo antitumor responses. In conclusion, V-ATPase inhibition using a monoclonal antibody directed against the V0a2 isoform increases antitumor immune responses and could therefore constitute an effective treatment strategy in OVCA
    corecore