15 research outputs found

    Impact of subunit linkages in an engineered homodimeric binding protein to α-synuclein

    No full text
    Aggregation of the protein α-synuclein (α-syn) has been implicated in Parkinson's disease and other neurodegenerative disorders, collectively referred to as synucleinopathies. The β-wrapin AS69 is a small engineered binding protein to α-syn that stabilizes a β-hairpin conformation of monomeric α-syn and inhibits α-syn aggregation at substoichiometric concentrations. AS69 is a homodimer whose subunits are linked via a disulfide bridge between their single cysteine residues, Cys-28. Here we show that expression of a functional dimer as a single polypeptide chain is achievable by head-to-tail linkage of AS69 subunits. Choice of a suitable linker is essential for construction of head-to-tail dimers that exhibit undiminished α-syn affinity compared with the solely disulfide-linked dimer. We characterize AS69-GS3, a head-to-tail dimer with a glycine-serine-rich linker, under oxidized and reduced conditions in order to evaluate the impact of the Cys28-disulfide bond on structure, stability and α-syn binding. Formation of the disulfide bond causes compaction of AS69-GS3, increases its thermostability, and is a prerequisite for high-affinity binding to α-syn. Comparison of AS69-GS3 and AS69 demonstrates that head-to-tail linkage promotes α-syn binding by affording accelerated disulfide bond formation

    Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins

    No full text
    β-wrapins are engineered binding proteins stabilizing the β-hairpin conformations of amyloidogenic proteins islet amyloid polypeptide (IAPP), amyloid-β, and α-synuclein, thus inhibiting their amyloid propensity. Here, we use computational and experimental methods to investigate the molecular recognition of IAPP by β-wrapins. We show that the multi-targeted, IAPP, amyloid-β, and α-synuclein, binding properties of β-wrapins originate mainly from optimized interactions between β-wrapin residues and sets of residues in the three amyloidogenic proteins with similar physicochemical properties. Our results suggest that IAPP is a comparatively promiscuous β-wrapin target, probably due to the low number of charged residues in the IAPP β-hairpin motif. The sub-micromolar affinity of β-wrapin HI18, specifically selected against IAPP, is achieved in part by salt-bridge formation between HI18 residue Glu10 and the IAPP N-terminal residue Lys1, both located in the flexible N-termini of the interacting proteins. Our findings provide insights towards developing novel protein-based single- or multi-targeted therapeutics

    Opposed effects of dityrosine formation in soluble and aggregated alpha-synuclein on fibril growth

    No full text
    Parkinson's disease is the second most common neurodegenerative disease. It is characterized by aggregation of the protein α-synuclein (α-syn) in Lewy bodies, mitochondrial dysfunction, and increased oxidative stress in the substantia nigra. Oxidative stress leads to several modifications of biomolecules including dityrosine (DiY) crosslinking in proteins, which has recently been detected in α-syn in Lewy bodies from Parkinson's disease patients. Here we report that α-syn is highly susceptible to ultraviolet-induced DiY formation. We investigated DiY formation of α-syn and nine tyrosine-to-alanine mutants and monitored its effect on α-syn fibril formation in vitro. Ultraviolet irradiation of intrinsically disordered α-syn generates DiY-modified monomers and dimers, which inhibit fibril formation of unmodified α-syn by interfering with fibril elongation. The inhibition depends on both the DiY group and its integration into α-syn. When preformed α-syn fibrils are crosslinked by DiY formation, they gain increased resistance to denaturation. DiY-stabilized α-syn fibrils retain their high seeding efficiency even after being exposed to denaturant concentrations that completely depolymerize non-crosslinked seeds. Oxidative stress-associated DiY crosslinking of α-syn therefore entails two opposing effects: (i) inhibition of aggregation by DiY-modified monomers and dimers, and (ii) stabilization of fibrillar aggregates against potential degradation mechanisms, which can lead to promotion of aggregation, especially in the presence of secondary nucleation

    Single Fibril Growth Kinetics of α-Synuclein

    No full text
    Neurodegenerative disorders associated with protein misfolding are fatal diseases that are caused by fibrillation of endogenous proteins such as α-synuclein (α-syn) in Parkinson's disease (PD) or amyloid-β in Alzheimer's disease. Fibrils of α-syn are a major pathological hallmark of PD and certain aggregation intermediates are postulated to cause synaptic failure and cell death of dopaminergic neurons in the substantia nigra. For the development of therapeutic approaches, the mechanistic understanding of the fibrillation process is essential. Here we report real-time observation of α-syn fibril elongation on a glass surface, imaged by total internal reflection fluorescence microscopy using thioflavin T fluorescence. Fibrillation on the glass surface occurred in the same time frame and yielded fibrils of similar length as fibrillation in solution. Time-resolved imaging of fibrillation on a single fibril level indicated that α-syn fibril elongation follows a stop-and-go mechanism; that is, fibrils either extend at a homogenous growth rate or stop to grow for variable time intervals. The fibril growth kinetics were compatible with a model featuring two states, a growth state and a stop state, which were approximately isoenergetic and interconverted with rate constants of ~ 1.5 × 10− 4 s− 1. In the growth state, α-syn monomers were incorporated into the fibril with a rate constant of 8.6 × 103 M− 1 s− 1. Fibril elongation of α-syn is slow compared to other amyloidogenic proteins

    β-Turn exchanges in the α-synuclein segment 44-TKEG-47 reveal high sequence fidelity requirements of amyloid fibril elongation

    No full text
    The folding of turns and β-hairpins has been implicated in amyloid formation, with diverse potential consequences such as promotion or inhibition of fibril nucleation, fibril elongation, or off-pathway oligomer formation. In the Parkinson's disease-associated protein α-synuclein (αS), a β-hairpin comprised of residues 36–56 was detected in complex with an engineered binding protein, with a turn formed by the αS sequence segment 44-TKEG-47. Molecular dynamics simulations revealed extensive populations of transient β-hairpin conformations in this region in free, monomeric αS. Here, we investigated potential effects of turn formation on αS fibril formation by studying the aggregation kinetics of an extensive set of αS variants with between two and four amino acid exchanges in the 44-TKEG-47 segment. The exchanges were chosen to specifically promote formation of β1-, β1’-, or β2’-turns. All variants assembled into amyloid fibrils, with increased β1’- or β2’-turn propensity associated with faster aggregation and increased β1-turn propensity with slower aggregation compared to wild-type (WT) αS. Atomic force microscopy demonstrated that β-turn exchanges altered fibril morphology. In cross-elongation experiments, the turn variants showed a low ability to elongate WT fibril seeds, and, vice versa, WT monomer did not efficiently elongate turn variant fibril seeds. This demonstrates that sequence identity in the turn region is crucial for efficient αS fibril elongation. Elongation experiments of WT fibril seeds in the presence of both WT and turn variant monomers suggest that the turn variants can bind and block WT fibril ends to different degrees, but cannot efficiently convert into the WT fibril structure. Our results indicate that modifications in the 44-TKEG-47 segment strongly affect amyloid assembly by driving αS into alternative fibril morphologies, whose elongation requires high sequence fidelity

    DNP-Enhanced MAS NMR: A Tool to Snapshot Conformational Ensembles of α -Synuclein in Different States

    No full text
    Intrinsically disordered proteins dynamically sample a wide conformational space and therefore do not adopt a stable and defined three-dimensional conformation. The structural heterogeneity is related to their proper functioning in physiological processes. Knowledge of the conformational ensemble is crucial for a complete comprehension of this kind of proteins. We here present an approach that utilizes dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of sparsely isotope-labeled proteins in frozen solution to take snapshots of the complete structural ensembles by exploiting the inhomogeneously broadened line-shapes. We investigated the intrinsically disordered protein α-synuclein (α-syn), which plays a key role in the etiology of Parkinson’s disease, in three different physiologically relevant states. For the free monomer in frozen solution we could see that the so-called “random coil conformation” consists of α-helical and β-sheet-like conformations, and that secondary chemical shifts of neighboring amino acids tend to be correlated, indicative of frequent formation of secondary structure elements. Based on these results, we could estimate the number of disordered regions in fibrillar α-syn as well as in α-syn bound to membranes in different protein-to-lipid ratios. Our approach thus provides quantitative information on the propensity to sample transient secondary structures in different functional states. Molecular dynamics simulations rationalize the results

    A β-Hairpin-Binding Protein for Three Different Disease-Related Amyloidogenic Proteins

    No full text
    Amyloidogenic proteins share a propensity to convert to the b-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered b-hairpin-binding protein, the bwrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-b peptide, a-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents
    corecore