21,581 research outputs found

    Mechanisms of MR/N024524/1Scarless Repair at Time of Menstruation: Insights From Mouse Models

    Get PDF
    The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair

    High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    Full text link
    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×1040.6\times10^4 photons/(s\cdotmW\cdotMHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering

    Events leading up to the June 2015 outburst of V404 Cyg

    Full text link
    On 2015 June 15 the burst alert telescope (BAT) on board {\em Swift} detected an X-ray outburst from the black hole transient V404 Cyg. We monitored V404 Cyg for the last 10 years with the 2-m Faulkes Telescope North in three optical bands (V, R, and i^{'}). We found that, one week prior to this outburst, the optical flux was 0.1--0.3 mag brighter than the quiescent orbital modulation, implying an optical precursor to the X-ray outburst. There is also a hint of a gradual optical decay (years) followed by a rise lasting two months prior to the outburst. We fortuitously obtained an optical spectrum of V404 Cyg 13 hours before the BAT trigger. This too was brighter (1mag\sim1\rm\,mag) than quiescence, and showed spectral lines typical of an accretion disk, with characteristic absorption features of the donor being much weaker. No He II emission was detected, which would have been expected had the X-ray flux been substantially brightening. This, combined with the presence of intense Hα\alpha emission, about 7 times the quiescent level, suggests that the disk entered the hot, outburst state before the X-ray outburst began. We propose that the outburst is produced by a viscous-thermal instability triggered close to the inner edge of a truncated disk. An X-ray delay of a week is consistent with the time needed to refill the inner region and hence move the inner edge of the disk inwards, allowing matter to reach the central BH, finally turning on the X-ray emission.Comment: Accepted by ApJ Letter, 7 pages, 5 figure

    An Infrared Determination of the Reddening and Distance to Dwingeloo 1

    Get PDF
    We present for the first time infrared observations of the nearby highly obscured galaxy Dwingeloo 1 (Dw1), including deep H-band imaging covering a total of 4.9x4.9 arcmin, together with J and Ks imaging of the central 2.5x2.5 arcmin. We used the small dispersion of the intrinsic infrared colors of spiral galaxies to determine an infrared H-band extinction of A_H = 0.47+/-0.11 mag towards Dw1. In using infrared colors, the uncertainties in the reddening and distance are reduced by a factor of three. The H-band magnitude corrected for extinction and the infrared Tully-Fisher relation are then used to estimate a distance modulus of (m-M)_0 = 28.62+/-0.27, and thus a distance of d = 5.3 {+0.7/-0.6} Mpc, which puts Dw1 at the far end of the IC342/Maffei 1 & 2 group. Our result is largely independent of the nature of the reddening law because we estimated both the reddening and the distance at the same wavelength range.Comment: 20 pages, 2 figures, see http://nicmos2.as.arizona.edu/~aalonso/Dw1/dw1_paper.htm

    Entanglement between more than two hundred macroscopic atomic ensembles in a solid

    Full text link
    We create a multi-partite entangled state by storing a single photon in a crystal that contains many large atomic ensembles with distinct resonance frequencies. The photon is re-emitted at a well-defined time due to an interference effect analogous to multi-slit diffraction. We derive a lower bound for the number of entangled ensembles based on the contrast of the interference and the single-photon character of the input, and we experimentally demonstrate entanglement between over two hundred ensembles, each containing a billion atoms. In addition, we illustrate the fact that each individual ensemble contains further entanglement. Our results are the first demonstration of entanglement between many macroscopic systems in a solid and open the door to creating even more complex entangled states.Comment: 10 pages, 8 figures; see also parallel submission by Frowis et a

    The Influence of Bars on Nuclear Activity

    Full text link
    We test ideas on fueling of galactic nuclei by bar-driven inflow by comparing the detection rate and intensity of nuclear H II regions and AGNs among barred and unbarred galaxies in a sample of over 300 spirals selected from our recent optical spectroscopic survey of nearby galaxies. Among late-type spirals (Sc-Sm), but not early-type (S0/a-Sbc), we observe in the barred group a very marginal increase in the detection rate of H II nuclei and a corresponding decrease in the incidence of AGNs. The minor differences in the detection rates, however, are statistically insignificant, most likely stemming from selection effects and not from a genuine influence from the bar. The presence of a bar seems to have no noticeable impact on the likelihood of a galaxy to host either nuclear star formation or an AGN. The nuclei of early-type barred spirals do exhibit measurably higher star-formation rates than their unbarred counterparts, as indicated by either the luminosity or the equivalent width of H-alpha emission. By contrast, late-type spirals do not show such an effect. Bars have a negligible effect on the strength of the AGNs in our sample, regardless of the Hubble type of the host galaxy. This result confirms similar conclusions reached by other studies based on much smaller samples.Comment: To appear in the Astrophysical Journal. LaTex, 31 pages including 6 postscript figures and 3 tables. AAStex macros include

    VHE Gamma Rays from PKS 2155-304

    Get PDF
    The close X-ray selected BL Lac PKS 2155-304 has been observed using the University of Durham Mark 6 very high energy (VHE) gamma ray telescope during 1996 September/October/November and 1997 October/November. VHE gamma rays with energy > 300 GeV were detected from this object with a time-averaged integral flux of (4.2 +/- 0.7 (stat) +/- 2.0 (sys)) x 10^(-11) per cm2 per s. There is evidence for VHE gamma ray emission during our observations in 1996 September and 1997 October/November, with the strongest emission being detected in 1997 November, when the object was producing the largest flux ever recorded in high-energy X-rays and was detected in > 100 MeV gamma-rays. The VHE and X-ray fluxes show evidence of a correlation.Comment: 14 pages, 6 figures, accepted for publication in Ap.

    Parallel algorithm with spectral convergence for nonlinear integro-differential equations

    Get PDF
    We discuss a numerical algorithm for solving nonlinear integro-differential equations, and illustrate our findings for the particular case of Volterra type equations. The algorithm combines a perturbation approach meant to render a linearized version of the problem and a spectral method where unknown functions are expanded in terms of Chebyshev polynomials (El-gendi's method). This approach is shown to be suitable for the calculation of two-point Green functions required in next to leading order studies of time-dependent quantum field theory.Comment: 15 pages, 9 figure

    NMA CO (J=1-0) Observations of the Halpha/Radio Lobe Galaxy NGC 3079: Gas Dynamics in a Weak Bar Potential and Central Massive Core

    Get PDF
    within 24 lines with 80 characters) We present ^12CO (1-0) observations in the central 4.5 kpc (1 arcmin) of the Halpha/Radio lobe galaxy NGC 3079 with the Nobeyama Millimeter Array. The molecular gas shows four components: a main disk, spiral arms, a nuclear disk, and a nuclear core. The main disk extends beyond our spatial coverage. The spiral arms are superimposed on the main disk. The nuclear disk with about 600 pc radius has an intense concentration of molecular gas. Its appearance on PV diagrams is indicative of oval motions of the gas, rather than circular. The nuclear core is more compact than our resolution. Though it is unresolved, the nuclear core shows a very high velocity about 200 km/s even at the radius of about 100 pc on the PV diagram. We propose a model that NGC 3079 contains a weak bar. This model explains the observed features: the main disk and spiral arms result from gaseous x1-orbits and associated crowding respectively. The nuclear disk arises from gaseous x2-orbits. From the appearance of the spiral arms on the PV diagram, the pattern speed of the bar is estimated to be 55+-10 km/s/kpc. The high velocity of the nuclear core cannot be explained by our model for a bar. Thus we attribute it to a central massive core with a dynamical mass of 10^9 Msun within the central 100 pc. This mass is three orders of magnitude more massive than that of a central black hole in this galaxy.Comment: 43 pages, 17 figures; ApJ, 573, 105, 200
    corecore