23,180 research outputs found

    Permutation Complexity and Coupling Measures in Hidden Markov Models

    Get PDF
    In [Haruna, T. and Nakajima, K., 2011. Physica D 240, 1370-1377], the authors introduced the duality between values (words) and orderings (permutations) as a basis to discuss the relationship between information theoretic measures for finite-alphabet stationary stochastic processes and their permutation analogues. It has been used to give a simple proof of the equality between the entropy rate and the permutation entropy rate for any finite-alphabet stationary stochastic process and show some results on the excess entropy and the transfer entropy for finite-alphabet stationary ergodic Markov processes. In this paper, we extend our previous results to hidden Markov models and show the equalities between various information theoretic complexity and coupling measures and their permutation analogues. In particular, we show the following two results within the realm of hidden Markov models with ergodic internal processes: the two permutation analogues of the transfer entropy, the symbolic transfer entropy and the transfer entropy on rank vectors, are both equivalent to the transfer entropy if they are considered as the rates, and the directed information theory can be captured by the permutation entropy approach.Comment: 26 page

    Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging.

    Get PDF
    Quantitative cardiovascular magnetic resonance (CMR) imaging can be used to characterize fibrosis, oedema, ischaemia, inflammation and other disease conditions. However, the need to reduce artefacts arising from body motion through a combination of electrocardiography (ECG) control, respiration control, and contrast-weighting selection makes CMR exams lengthy. Here, we show that physiological motions and other dynamic processes can be conceptualized as multiple time dimensions that can be resolved via low-rank tensor imaging, allowing for motion-resolved quantitative imaging with up to four time dimensions. This continuous-acquisition approach, which we name cardiovascular MR multitasking, captures - rather than avoids - motion, relaxation and other dynamics to efficiently perform quantitative CMR without the use of ECG triggering or breath holds. We demonstrate that CMR multitasking allows for T1 mapping, T1-T2 mapping and time-resolved T1 mapping of myocardial perfusion without ECG information and/or in free-breathing conditions. CMR multitasking may provide a foundation for the development of setup-free CMR imaging for the quantitative evaluation of cardiovascular health
    • …
    corecore