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Abstract

We consider time domain formulations of Maxwell’s equations for the Lorentz model for
metamaterials. The field equations are considered in two different forms which have either six
or four unknown vector fields. In each case we use arguments tuned to the physical laws to derive
data-stability estimates which do not require Gronwall’s inequality. The resulting estimates are,
in this sense, sharp. We also give fully discrete formulations for each case and extend the sharp
data-stability to these. Since the physical problem is linear it follows (and we show this with
examples) that this stability property is also reflected in the constants appearing in the a priori
error bounds. By removing the exponential growth in time from these estimates we conclude
that these schemes can be used with confidence for the long-time numerical simulation of Lorentz
metamaterials.
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1 Introduction

Electromagnetic metamaterials are artificially structured materials which exhibit exotic properties
such as negative refractive index and reversed Doppler effects. The successful construction of such
metamaterials in 2000 triggered a wave of further study of metamaterials and exploration of their
applications in diverse areas such as sub-wavelength imaging and cloaking. More details can be
found in monographs such as [9, 28, 34, 7] and references cited therein.

Although the finite element approximation of Maxwell’s equations has been extensively doc-
umented for ‘classical’ materials (see, for example, [3, 4, 8, 14, 31, 33, 37] and their references),

∗This work was supported in part by NSFC Project 11271310, NSF grant DMS-1416742, and a grant from
the Simons Foundation (#281296 to Li), in part by scheme 4 London Mathematical Society funding and in part
by the Engineering and Physical Sciences Research Council (EP/H011072/1 to Shaw). This support is gratefully
acknowledged. Li wants to thank UNLV for granting his sabbatical leave in Spring 2014 when he got time finishing
this work.
†Department of Mathematical Sciences, University of Nevada Las Vegas, NV 89154-4020, USA.

jichun@unlv.nevada.edu.
‡BICOM, Institute of Computational Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH, UK.

www.brunel.ac.uk/bicom, simon.shaw@brunel.ac.uk.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/29140856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Long Time Integration of Lorentz Metamaterials 2

there is now an opportunity to build on this body of knowledge for the development and analysis
of finite element methods (FEM) for Maxwell’s equations for metamaterials. In this direction we
mention [10, 11, 5, 2, 21] for the time-harmonic form, and [19, 20, 16] for the time-domain form.
Our focus here is on the Lorentz model which, as we will see below, introduces additional unknowns
for electrical and magnetic polarizations. These are governed by ordinary differential equations (in
time) which hold at each point in space and have the effect of making the (meta)material dispersive,
or ‘frequency dependent’. In this context we recall also the work on the time-domain Maxwell’s
equations in general dispersive media in [1, 17, 24, 35, 27, 36]. In particular, [1] contains a study
of numerical dispersion for Debye and Lorentz media and [35] gives long-time stability and error
estimates for a Debye model.

In recent years there have been several efforts in developing and analyzing some FEMs for
the time-domain Maxwell’s equations for Lorentz metamaterials (see, for example, [22] and the
references therein). However most of these previous results for data-stability and error bounds
were derived with the use of Gronwall-type inequalities and, hence, are of limited practical use due
to the exponential growth, in time, of the constants. This article improves upon this current ‘state
of the art’ by building upon the ‘long-time’ results in [35] for two popular numerical schemes.

To be precise, in Section 2 we describe the time domain formulation of Maxwell’s equations
for Lorentz metamaterials. In Sections 3 and 4, respectively, the field equations are considered in
two different forms which have, respectively, six and four unknown vector fields. In each case we
use arguments tuned to the physical laws to derive data-stability estimates which do not require
Gronwall’s inequality. The resulting estimates are sharp, in that they contain stability constants
that are time independent, and appear to be novel. We also give fully discrete formulations for
each case and extend the sharp data stability to these formulations. Moreover, since the physical
problem is linear the error terms obey essentially the same stability estimates but with data replaced
by approximation error. With this in mind we can therefore show by examples that the long-time
stability properties of these schemes are also reflected in the a priori error bounds. The time
dependence in these constants then arises from the time dependence in the norms of the data
and exact solution and produces, at worst, low-order-polynomial growth in time rather than the
exponential growth that arises from Gronwall arguments. Hence, we can conclude that the resulting
numerical schemes can be used with confidence for the long time numerical simulation of Lorentz
metamaterials. This is the major contribution of the work presented below. In Section 5 we close
with a short discussion of the formulations.

Throughout our notation is mostly standard. For example, C > 0 will denote a generic positive
constant (independent of the finite element mesh size h and time step size τ) and we let (Hσ(Ω))3

be the standard Sobolev space equipped with the norm ‖ · ‖σ and semi-norm | · |σ. Specifically,
‖ · ‖0 will mean the (L2(Ω))3-norm. From [31] (for example) we also recall the standard spaces for
Maxwell problems,

H(curl; Ω) = {v ∈ (L2(Ω))3 : ∇× v ∈ (L2(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω) : n× v = 0 on ∂Ω},
Hσ(curl; Ω) = {v ∈ (Hσ(Ω))3 : ∇× v ∈ (Hσ(Ω))3},

where σ > 0 is a real number, and Ω is a bounded Lipschitz polyhedral domain in R3 with
connected boundary ∂Ω and outward directed unit normal n. We equip H(curl; Ω) with norm
‖v‖0,curl = (‖v‖20 + ‖curl v‖20)1/2, and Hσ(curl; Ω) with norm ‖v‖σ,curl = (‖v‖2σ + ‖curl v‖2σ)1/2.
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For clarity, in the rest of the paper we introduce the vector notation L2(Ω) = (L2(Ω))3 and
Hσ(Ω) = (Hσ(Ω))3 and also we often omit the explicit display of the dependence of quantitites on
x ∈ Ω because we want to focus on the handling of their time dependence. The spatial dependencies
are handled in a standard way. Further notation is introduced as and when needed.

2 The governing equations

In general terms, the problem of electromagnetic wave propagation requires the solution of Maxwell’s
equations,

∇×E = −∂B
∂t

, and ∇×H =
∂D

∂t
in Ω× I (1)

where E(x, t) and H(x, t) are the electric and magnetic fields, and where D(x, t) and B(x, t) are
the corresponding electric and magnetic flux densities. We will be more specific about inital and
boundary data below but here, to close the problem, we note that in a general (linear) medium D
and B are related to the electric and magnetic fields E and H through the constitutive relations

D = ε0E + P ≡ εE and B = µ0H +M ≡ µH. (2)

Here ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P (respectively M) is the
induced electric (respectively magnetic) polarization. The introduction of ε and µ as the permit-
tivity and permeability of the underlying medium implies that there is a functional relationship
between E and P , and between H and M , and it is the form of these relationships that determines
the type of medium and its properties. It is convenient to first discuss these models in the frequency
domain although later we will revert to the time domain for the specific formulations that we study.

One of the most general models used for modeling wave propagation in metamaterials (see, for
example [22]) is the so-called Lorentz model, whose permittivity and permeability are described by

ε(ω) = ε0

(
1−

ω2
pe

ω2 − ω2
e0 − jΓeω

)
, µ(ω) = µ0

(
1−

ω2
pm

ω2 − ω2
m0 − jΓmω

)
, (3)

where ωpe (respectively ωpm) is the electric (respectively magnetic) plasma frequency, Γe (respec-
tively Γm) is the electric (respectively magnetic) damping frequency, ωe0 (respectively ωm0) is the
electric (respectively magnetic) resonance frequency, j =

√
−1 is the imaginary unit, and ω is a

general frequency. Notice that when ωe0 = ωm0 = 0, the Lorentz model reduces to the Drude model
(e.g. [22]) which is another popular metamaterial model:

ε(ω) = ε0

(
1−

ω2
pe

ω(ω − jΓe)

)
, µ(ω) = µ0

(
1−

ω2
pm

ω(ω − jΓm)

)
. (4)

Furthermore, if we set Γe = Γm = 0 then this Drude model reduces to the cold plasma model,

ε(ω) = ε0

(
1−

ω2
pe

ω2

)
, µ(ω) = µ0

(
1−

ω2
pm

ω2

)
(5)

and so we see that, as long as we allow for these reductions, the study of the Lorentz model, (3),
presented below also includes these other models. Therefore, in the rest of this article, unless
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specified clearly to the contrary, we will assume that all of the physical parameters are positive (i.e.
ε0, µ0, ωe0, ωm0, . . . ).

Moving away from the frequency domain formulation we recall from [20], or infer from (3) above,
the following equations for the time-domain Lorentz model for metamaterials:

ε0
∂E

∂t
+
∂P

∂t
−∇×H = 0, in Ω× (0, T ), (6)

µ0
∂H

∂t
+
∂M

∂t
+∇×E = 0, in Ω× (0, T ), (7)

1

ε0ω2
pe

∂2P

∂t2
+

Γe
ε0ω2

pe

∂P

∂t
+

ω2
e0

ε0ω2
pe

P −E = 0, in Ω× (0, T ), (8)

1

µ0ω2
pm

∂2M

∂t2
+

Γm
µ0ω2

pm

∂M

∂t
+

ω2
m0

µ0ω2
pm

M −H = 0, in Ω× (0, T ). (9)

To make the problem well-posed, we assume that (6)-(9) are supplemented by the perfectly-
conducting boundary condition

n×E = 0 on ∂Ω, (10)

and, with x dependence suppressed, the initial conditions

E(0) = E0, H(0) = H0, (11)

P (0) = P 0, M(0) = M0,
∂P

∂t
(0) = P 1,

∂M

∂t
(0) = M1, (12)

where E0,H0,P 0,M0,P 1, and M1 are given functions.
Now that the physical model is completely specified we notice that there are several ways in

which we could approach it in terms of giving a fully discrete numerical approximation. If we
work with the model as described then, in the simplest case, we need to store ten vector fields:
the current and previous time steps for E and H and three consecutive time levels for P and
M (i.e. thirty scalar fields in R3). And, furthermore, we would need a time stepper that can
handle the second time derivatives. We do not consider the discretization of second order ODE’s
in this article but instead first, in Section 3, we reduce (8) and (9) to first order ODE’s by defining
J = P t and K = M t where, here and below, the subscript denotes partial differentiation. We
then need only handle first time derivatives in the time stepping but we will have to store twelve
vector fields. Alternatively, in Section 4, we introduce another formulation which uses ony four
vector fields at each of two time levels but requires the time integrals of J and K. Since, in the
time-discrete setting, these can be updated by recursion this scheme requires the storage of only
ten vector fields.

We also note that we could formulate this Lorentz model in first-order form with only two
vector fields, E and H. The result is a system of convolution-type integrodifferential equations
with non-monotone kernels of positive type. In the discrete formulation these ‘history integrals’
can be updated in a recursive way by introducing complex arithmetic and using Euler’s formula,
and the scheme would need only eight real vector fields to be stored in memory. We do not study
this scheme here because of the difficulties associated with proving that the discrete memory term
is also of positive type. In general we can expect such a proof to be non-trivial and, for example,
refer to the analysis in [30] for the case of monotone kernels.
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It is not the purpose of this study to reach any decision as to which of these schemes is the ‘best’
since that would require a more practical study organised around a well-chosen set of numerical
tests. Rather we show, in each case, that a careful treatment of the dispersive terms results in
data-stability estimates for both the continuous and discrete problems with constants that grow
much more slowly with time that Gronwall-type estimates would suggest. This analysis carries over
to the constants in the a priori error bounds.

3 Investigation of the Lorentz model in six variables

Following our previous work in [20] we can rewrite the Lorentz model (6)-(9) as,

ε0
∂E

∂t
−∇×H + J = 0, (13)

µ0
∂H

∂t
+∇×E +K = 0, (14)

1

ε0ω2
pe

∂J

∂t
+

Γe
ε0ω2

pe

J −E +
ω2
e0

ε0ω2
pe

P = 0, (15)

ω2
e0

ε0ω2
pe

∂P

∂t
− ω2

e0

ε0ω2
pe

J = 0, (16)

1

µ0ω2
pm

∂K

∂t
+

Γm
µ0ω2

pm

K −H +
ω2
m0

µ0ω2
pm

M = 0, (17)

ω2
m0

µ0ω2
pm

∂M

∂t
− ω2

m0

µ0ω2
pm

K = 0, (18)

where we define the induced electric and magnetic currents J = P t and K = M t. Note that
redundant coefficients are included in (16) and (18) in order to make the forthcoming stability and
error analysis easier to follow.

Letting V ∗ denote the topological dual space of V = H0(curl; Ω) and denoting the standard
L2(Ω) inner product as ( · , · ), it is then easy to see that a weak formulation of (13)-(18) can be
written as: Find E ∈ H1(0, T ;V ∗)∩L2(0, T ;V ), and J ,P ,H,K,M ∈ H1(0, T ;L2(Ω)) such that

ε0(Et,φ)− (H,∇× φ) + (J ,φ) = 0, ∀ φ ∈ H0(curl; Ω), (19)

µ0(Ht,ψ) + (∇×E +K,ψ) = 0, ∀ ψ ∈ L2(Ω), (20)(
1

ε0ω2
pe

J t +
Γe
ε0ω2

pe

J −E +
ω2
e0

ε0ω2
pe

P ,φ1

)
= 0, ∀ φ1 ∈ L2(Ω), (21)(

ω2
e0

ε0ω2
pe

P t −
ω2
e0

ε0ω2
pe

J ,φ2

)
= 0, ∀ φ2 ∈ L2(Ω), (22)(

1

µ0ω2
pm

Kt +
Γm

µ0ω2
pm

K −H +
ω2
m0

µ0ω2
pm

M ,ψ1

)
= 0, ∀ ψ1 ∈ L2(Ω), (23)(

ω2
m0

µ0ω2
pm

M t −
ω2
m0

µ0ω2
pm

K,ψ2

)
= 0, ∀ ψ2 ∈ L2(Ω), (24)
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subject to the boundary condition (10) and initial conditions

E(x, 0) = E0(x), J(x, 0) = J0(x), P (x, 0) = P 0(x), (25)

H(x, 0) = H0(x), K(x, 0) = K0(x), M(x, 0) = M0(x). (26)

Choosing the test functions in (19)-(24) as E,H,J ,P ,K andM , respectively, and summing up
the results, we can easily obtain (see [20, Lemma 5.1]) the following data-stability for the continuous
time system:

ε0||E(t)||20 + µ0||H(t)||20 +
1

ε0ω2
pe

||J ||20 +
1

µ0ω2
pm

||K||20 +
ω2
e0

ε0ω2
pe

||P (t)||20

+
ω2
m0

µ0ω2
pm

||M(t)||20 6 ε0||E(0)||20 + µ0||H(0)||20 +
1

ε0ω2
pe

||J(0)||20

+
1

µ0ω2
pm

||K(0)||20 +
ω2
e0

ε0ω2
pe

||P (0)||20 +
ω2
m0

µ0ω2
pm

||M(0)||20.

To design a mixed finite element method, we partition Ω by a family of regular tetrahedral
(or hexaderal) meshes Th with maximum mesh size h and, as long as we bear in mind the effect
of solution-regularity, we can in principle use any order of Raviart-Thomas-Nédélec finite element
spaces on this mesh. For tetrahedra (e.g., [32] and [31]), for any l > 1, and with Sl = {~p ∈
(p̃l)

3,x · ~p = 0}, these spaces are,

Uh = {uh ∈ H(div; Ω) : uh|K ∈ (pl−1)3 ⊕ p̃l−1x, ∀ K ∈ Th},
V h = {vh ∈ H(curl; Ω) : vh|K ∈ (pl−1)3 ⊕ Sl, ∀ K ∈ Th},

while for Raviart-Thomas-Nédélec cubic elements (e.g., [32] and [31]) we have,

Uh = {uh ∈ H(div; Ω) : uh|K ∈ Ql,l−1,l−1 ×Ql−1,l,l−1 ×Ql−1,l−1,l, ∀ K ∈ Th},
V h = {vh ∈ H(curl; Ω) : vh|K ∈ Ql−1,l,l ×Ql,l−1,l ×Ql,l,l−1, ∀ K ∈ Th}.

Here pk denotes the space of polynomials of degree k, p̃k denotes the space of homogeneous poly-
nomials of degree k, and Qi,j,k denotes the space of polynomials whose degrees are less than or
equal to i, j, k in variables x, y, z, respectively. To impose the boundary condition (10), we denote
V 0
h = {v ∈ V h : v × n = 0 on ∂Ω}. It is easy to see that

∇× V h ⊂ Uh. (27)

For error analysis, we need two more operators. The first one is the standard L2(Ω)-projection
operator Π2: For any H ∈ L2(Ω), Π2H ∈ Uh satisfies

(Π2H −H,ψh) = 0, ∀ ψh ∈ Uh (28)

and where norms of Π2H −H can be estimated by standard best approximation arguments. The
second is the standard Nédélec interpolation operator Πh defined from H(curl; Ω) to V h. We
refer to the literature (e.g. [31, Thm, 5.41]) for full details but here for the `−th order first-type
curl-conforming Nédélec spaces in [32], we will assume error bounds of the form

‖E −ΠhE‖0 + ‖∇ × (E −ΠhE)‖0 6 Ch`‖E‖H`(curl;Ω)
. (29)



Long Time Integration of Lorentz Metamaterials 7

These estimates should be regarded in the context of the usual technical assumptions of the mesh
being shape-regular.

To define a fully discrete scheme, we assume that the time interval (0, T ) is divided into N
uniform subintervals by points 0 = t0 < t1 < · · · < tN = T, where tk = kτ and τ = T/N is the
time step, and denote the k-th subinterval by Ik = [tk−1, tk]. Moreover, we introduce the backward
and average operators:

δτu
k = (uk − uk−1)/τ, uk = (uk + uk−1)/2,

for any function uk = u(·, kτ), with 0 6 k 6 N.
For the purposes of comparison with what follows, let us first recall the Crank-Nicolson scheme

constructed in [20, p.634] for solving the system (13)-(18): For k = 1, 2, · · · , N, find Ek
h ∈

V 0
h,J

k
h,P

k
h ∈ V h and Hk

h,K
k
h,M

k
h ∈ Uh such that

ε0(δτE
k
h,φh)− (H

k
h,∇× φh) + (J

k
h,φh) = 0, (30)

µ0(δτH
k
h,ψh) + (∇×Ek

h,ψh) + (K
k
h,ψh) = 0, (31)

1

ε0ω2
pe

(δτJ
k
h,φ1h) +

Γe
ε0ω2

pe

(J
k
h,φ1h)− (E

k
h,φ1h) +

ω2
e0

ε0ω2
pe

(P
k
h,φ1h) = 0, (32)

ω2
e0

ε0ω2
pe

(δτP
k
h,φ2h)− ω2

e0

ε0ω2
pe

(J
k
h,φ2h) = 0, (33)

1

µ0ω2
pm

(δτK
k
h + ΓmK

k
h + ω2

m0M
k
h,ψ1h)− (H

k
h,ψ1h) = 0, (34)

ω2
m0

µ0ω2
pm

(δτM
k
h,ψ2h)− ω2

m0

µ0ω2
pm

(K
k
h,ψ2h) = 0, (35)

hold true for any φh ∈ V 0
h,ψh,ψ1h,ψ2h ∈ Uh and φ1h,φ2h ∈ V h, and are subject to the initial

approximations

E0
h(x) = ΠhE0(x), J0

h(x) = ΠhJ0(x), P 0
h(x) = ΠhP 0(x),

H0
h(x) = Π2H0(x), K0

h(x) = Π2K0(x), M0
h(x) = Π2M0(x).

Choosing the test functions in (30)-(35) as E
k
h,H

k
h,J

k
h,P

k
h,K

k
h and M

k
h, respectively, and

summing up the results, we can obtain (cf. [20, Lemma 5.2]) the following discrete stability estimate,
which has the exactly same form as the one obtained for the continuous time system: for any k > 1,
we have

ε0||Ek
h||20 + µ0||Hk

h||20 +
1

ε0ω2
pe

||Jkh||20 +
1

µ0ω2
pm

||Kk
h||20 +

ω2
e0

ε0ω2
pe

||P k
h||20

+
ω2
m0

µ0ω2
pm

||Mk
h||20 6 ε0||E0

h||20 + µ0||H0
h||20 +

1

ε0ω2
pe

||J0
h||20

+
1

µ0ω2
pm

||K0
h||20 +

ω2
e0

ε0ω2
pe

||P 0
h||20 +

ω2
m0

µ0ω2
pm

||M0
h||20.

Although the computational solution of (30)-(35) appears rather demanding it actually requires
only minor modifications to a standard Crank-Nicolson Maxwell solver. In each time step, we first
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solve a linear system for Ek
h and Hk

h, after using (32)-(35) to eliminate all but these from (30) and
(31). Then we update Jkh and Kk

h using two simple recursive formulas, and finally update P k
h and

Mk
h through simple algebra operations. For the details see [20, p.635].
Now let us consider a leap-frog scheme for solving the system (13)-(18): Given initial ap-

proximations E0
h,J

1
2
h ,P

0
h,H

1
2
h ,K

0
h,M

1
2
h , for k = 1, 2, · · · , N, find Ek

h ∈ V 0
h,J

k+ 1
2

h ,P k
h ∈ V h and

H
k+ 1

2
h ,Kk

h,M
k+ 1

2
h ∈ Uh such that

ε0(δτE
k
h,φh)− (H

k− 1
2

h ,∇× φh) + (J
k− 1

2
h ,φh) = 0, (36)

µ0(δτH
k+ 1

2
h ,ψh) + (∇×Ek

h,ψh) + (Kk
h,ψh) = 0, (37)

1

ε0ω2
pe

(δτJ
k+ 1

2
h ,φ1h) +

Γe
ε0ω2

pe

(
1

2
(J

k+ 1
2

h + J
k− 1

2
h ),φ1h)

− (Ek
h,φ1h) +

ω2
e0

ε0ω2
pe

(P k
h,φ1h) = 0, (38)

ω2
e0

ε0ω2
pe

(δτP
k
h,φ2h)− ω2

e0

ε0ω2
pe

(J
k− 1

2
h ,φ2h) = 0, (39)

1

µ0ω2
pm

(δτK
k
h,ψ1h) +

Γm
µ0ω2

pm

(
1

2
(Kk

h +Kk−1
h ),ψ1h)

− (H
k− 1

2
h ,ψ1h) +

ω2
m0

µ0ω2
pm

(M
k− 1

2
h ,ψ1h) = 0, (40)

ω2
m0

µ0ω2
pm

(δτM
k+ 1

2
h ,ψ2h)− ω2

m0

µ0ω2
pm

(Kk
h,ψ2h) = 0, (41)

hold true for any φh ∈ V 0
h,ψh,ψ1h,ψ2h ∈ Uh and φ1h,φ2h ∈ V h. For the practical purpose of

obtaining the initial half-step values it is usual to start this leap-frog scheme from zero or constant
initial data. We then note that (36)-(41) can be implemented as follows: at each time step, first
solve (36), (39) and (40) and then solve (37), (38) and (41). Each of these solves can be done in
parallel if required.

The following discrete data-stability estimate shows that the solution remains bounded inde-
pendently of the time interval, (0, T ), of integration provided that the time step is small enough.

Theorem 3.1 Let cv = 1√
µ0ε0

denote the speed of light in a vacuum, and let cinv > 0 be the constant

in the standard inverse estimate,

||∇ × uh||0 6 cinvh−1||uh||0, ∀ uh ∈ V h. (42)

Then, under the time step constraint

τ 6 min

{
1

2ωpe
,

1

2ωpm
,

1

2ωe0
,

1

2ωm0
,

h

2cvcinv

}
, (43)
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for any k > 1, we have

ε0||Ek
h||20 + µ0||H

k+ 1
2

h ||20 +
1

ε0ω2
pe

||Jk+ 1
2

h ||20 +
1

µ0ω2
pm

||Kk
h||20

+
ω2
e0

ε0ω2
pe

||P k
h||20 +

ω2
m0

µ0ω2
pm

||Mk+ 1
2

h ||20 6 3

(
ε0||E0

h||20 + µ0||H
1
2
h ||

2
0

+
1

ε0ω2
pe

||J
1
2
h ||

2
0 +

1

µ0ω2
pm

||K0
h||20 +

ω2
e0

ε0ω2
pe

||P 0
h||20 +

ω2
m0

µ0ω2
pm

||M
1
2
h ||

2
0

)
. (44)

Remark 3.2 We have implicitly assumed that none of the ω’s are zero in (43). These cases can
be dealt with by simple adaptations of this argument.

Proof. Choosing φh = τ
2 (Ek

h + Ek−1
h ),ψh = τ

2 (H
k+ 1

2
h + H

k− 1
2

h ),φ1h = τ
2 (J

k+ 1
2

h + J
k− 1

2
h ), φ2h =

τ
2 (P k

h+P k−1
h ),ψ1h = τ

2 (Kk
h+Kk−1

h ),ψ2h = τ
2 (M

k+ 1
2

h +M
k− 1

2
h ) in (36)-(41), respectively, summing

up the results, and using the following identities:

(∇×Ek
h,H

k+ 1
2

h +H
k− 1

2
h )− (H

k− 1
2

h ,∇× (Ek
h +Ek−1

h ))

= (∇×Ek
h,H

k+ 1
2

h )− (∇×Ek−1
h ,H

k− 1
2

h ),

(J
k− 1

2
h ,Ek

h +Ek−1
h )− (Ek

h,J
k+ 1

2
h + J

k− 1
2

h ) = (J
k− 1

2
h ,Ek−1

h )− (J
k+ 1

2
h ,Ek

h),

(Kk
h,H

k+ 1
2

h +H
k− 1

2
h )− (H

k− 1
2

h ,Kk
h +Kk−1

h ) = (Kk
h,H

k+ 1
2

h )− (Kk−1
h ,H

k− 1
2

h ),

(P k
h,J

k+ 1
2

h + J
k− 1

2
h )− (J

k− 1
2

h ,P k
h + P k−1

h ) = (P k
h,J

k+ 1
2

h )− (P k−1
h ,J

k− 1
2

h ),

(M
k− 1

2
h ,Kk

h +Kk−1
h )− (Kk

h,M
k+ 1

2
h +M

k− 1
2

h ) = (M
k− 1

2
h ,Kk−1

h )− (M
k+ 1

2
h ,Kk

h),

we have

0 =
ε0
2

(||Ek
h||20 − ||Ek−1

h ||20) +
µ0

2
(||Hk+ 1

2
h ||20 − ||H

k− 1
2

h ||20)

+
||Jk+ 1

2
h ||20 − ||J

k− 1
2

h ||20
2ε0ω2

pe

+
ω2
e0

2ε0ω2
pe

(||P k
h||20 − ||P k−1

h ||20) +
||Kk

h||20 − ||K
k−1
h ||20

2µ0ω2
pm

+
ω2
m0

2µ0ω2
pm

(||Mk+ 1
2

h ||20 − ||M
k− 1

2
h ||20) +

Γe
τε0ω2

pe

||τ
2

(J
k+ 1

2
h + J

k− 1
2

h )||20

+
Γm

τµ0ω2
pm

||τ
2

(Kk
h +Kk−1

h )||20 +
τ

2
[(∇×Ek

h,H
k+ 1

2
h )− (∇×Ek−1

h ,H
k− 1

2
h )]

+
τ

2
[(J

k− 1
2

h ,Ek−1
h )− (J

k+ 1
2

h ,Ek
h)] +

τ

2
[(Kk

h,H
k+ 1

2
h )− (Kk−1

h ,H
k− 1

2
h )]

+
τω2

e0

2ε0ω2
pe

[(P k
h,J

k+ 1
2

h )− (P k−1
h ,J

k− 1
2

h )] +
τω2

m0

2µ0ω2
pm

[(M
k− 1

2
h ,Kk−1

h )− (M
k+ 1

2
h ,Kk

h)].
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Summing this over k = 1 to N we obtain,

ε0
2 ||E

N
h ||20 + µ0

2 ||H
N+ 1

2
h ||20 + 1

2ε0ω2
pe
||JN+ 1

2
h ||20 + 1

2µ0ω2
pm
||KN

h ||20 +
ω2
e0

2ε0ω2
pe
||PN

h ||20

+
ω2
m0

2µ0ω2
pm
||MN+ 1

2
h ||20 6 ε0

2 ||E
0
h||20 + µ0

2 ||H
1
2
h ||

2
0 + 1

2ε0ω2
pe
||J

1
2
h ||

2
0 + 1

2µ0ω2
pm
||K0

h||20

+
ω2
e0

2ε0ω2
pe
||P 0

h||20 +
ω2
m0

2µ0ω2
pm
||M

1
2
h ||

2
0 − τ

2 [(∇×EN
h ,H

N+ 1
2

h )− (∇×E0
h,H

1
2
h )]

− τω2
e0

2ε0ω2
pe

[(PN
h ,J

N+ 1
2

h )− (P 0
h,J

1
2
h )] +

τω2
m0

2µ0ω2
pm

[(M
N+ 1

2
h ,KN

h )− (M
1
2
h ,K

0
h)],

+ τ
2 [(J

N+ 1
2

h ,EN
h )− (J

1
2
h ,E

0
h)]− τ

2 [(KN
h ,H

N+ 1
2

h )− (K0
h,H

1
2
h )], (45)

and then using the Cauchy-Schwarz inequality and the inverse estimate (42) we have

τ

2
(∇×EN

h ,H
N+ 1

2
h ) 6

τ

2
· cinvh−1||EN

h ||0||H
N+ 1

2
h ||0

=
τ

2
· cvcinvh−1√ε0||EN

h ||0
√
µ0||H

N+ 1
2

h ||0

6
(τcvcinv

2h

)2
δ1ε0||EN

h ||20 +
µ0

4δ1
||HN+ 1

2
h ||20

for all δ1 > 0. Similarly, for all δi > 0 for i = 2, . . . , 5, we have first,

τ

2
(J

N+ 1
2

h ,EN
h ) 6

τωpe
2
· 1√

ε0ω2
pe

||JN+ 1
2

h ||0
√
ε0||EN

h ||0

6
(τωpe

2

)2
δ2ε0||EN

h ||20 +
1

4δ2
· 1

ε0ω2
pe

||JN+ 1
2

h ||20,

second,

τ

2
(KN

h ,H
N+ 1

2
h ) 6

τωpm
2
· 1√

µ0ω2
pm

||KN
h ||0
√
µ0||H

N+ 1
2

h ||0

6
(τωpm

2

)2 δ3

µ0ω2
pm

||KN
h ||20 +

µ0

4δ3
||HN+ 1

2
h ||20,

and lastly,

τω2
e0

2ε0ω2
pe

(PN
h ,J

N+ 1
2

h ) 6
1

4δ4
· 1

ε0ω2
pe

||JN+ 1
2

h ||20 + (
τωe0

2
)2δ4 ·

ω2
e0

ε0ω2
pe

||PN
h ||20,

τω2
m0

2µ0ω2
pm

(M
N+ 1

2
h ,KN

h ) 6 (
τωm0

2
)2δ5 ·

1

µ0ω2
pm

||KN
h ||20 +

1

4δ5
· ω2

m0

µ0ω2
pm

||MN+ 1
2

h ||20.

Note that similar estimates can be obtained for the five terms in (45) that involve the initial
data, the estimate (44) can then be obtained by substituting the above estimates into (45) and
choosing δi and τ properly. A simple choice is to select δ1 = · · · = δ5 = 2 and require (43). This
concludes the proof. �
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Remark 3.3 We note that the stability estimate (44) just obtained for the leap-frog scheme has
exactly the same form as the stability estimate for the continuous problem, except that the stability
coefficient is raised from unity to three. It is easy to see from the proof that this constant of 3 in
(44) can be reduced, but not to unity.

Remark 3.4 Following similar ideas of our early work [20], we can use the ideas above to prove
the following error estimate:

||Ek −Ek
h||0 + ||Hk+ 1

2 −Hk+ 1
2

h ||0 + ||Jk+ 1
2 − Jk+ 1

2
h ||0 + ||Kk −Kk

h||0

+||P k − P k
h||0 + ||Mk+ 1

2 −Mk+ 1
2

h ||0 6 C(hl + τ2)

where the time dependence of C is due to norms of the data and exact solution, but not to an
invocation of Gronwall’s inequality. This error bound will hold true if the underlying solutions are
smooth enough and the errors in the initial data are bounded as O(hl + τ2). Here l > 1 denotes
the order of the basis functions in the finite element spaces Uh and V h. The proof of this result
with the modified constant is omitted here due to its length. A full example of an error bound with
temporally-sharp constants is given later in Theorem 4.6.

4 Investigation of the Lorentz model in four variables

If we solve (16) for P and (18) for M and substitute the results into (15) and (17) we can rewrite
the Lorentz model (13)-(18) as

ε0Et −∇×H + J = 0, µ0Ht +∇×E +K = 0, (46)

1

ε0ω2
pe

J t +
Γe
ε0ω2

pe

J +
ω2
e0

ε0ω2
pe

∫ t

0
J(s)ds−E = f(0), (47)

1

µ0ω2
pm

∂K

∂t
+

Γm
µ0ω2

pm

K +
ω2
m0

µ0ω2
pm

∫ t

0
K(s)ds−H = g(0), (48)

where

f(0) =
1

ε0ω2
pe

(J t(0) + ΓeJ(0))−E(0), g(0) =
1

µ0ω2
pm

(Kt(0) + ΓmK(0))−H(0)

are time independent and known.
We consider the following weak formulation of (46)-(48): Find E ∈ H1(0, T ;V ∗)∩L2(0, T ;V ),

and J ,H,K ∈ H1(0, T ;L2(Ω)) such that

ε0(Et,φ)− (H,∇× φ) + (J ,φ) = 0, µ0(Ht,ψ) + (∇×E +K,ψ) = 0, (49)(
1

ε0ω2
pe

J t +
Γe
ε0ω2

pe

J +
ω2
e0

ε0ω2
pe

∫ t

0
J(s)ds−E,φ1

)
= (f(0),φ1), (50)(

1

µ0ω2
pm

Kt +
Γm
ε0ω2

pm

K +
ω2
m0

µ0ω2
pm

∫ t

0
K(s)ds−H,ψ1

)
= (g(0),ψ1), (51)

∀ φ ∈ H0(curl; Ω), ∀ ψ ∈ L2(Ω), ∀ φ1 ∈ L2(Ω) and ∀ ψ1 ∈ L2(Ω)
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subject to the boundary condition (10) and initial data (x-dependence omitted):

E(0) = E0, J(0) = J0, H(0) = H0, K(0) = K0. (52)

Our first result for this formulation demonstrates long-time data stability and provides a com-
parator for the discrete stability estimate that follows in Theorem 4.4.

Theorem 4.1 For the solution (E,H,J ,K) of (49)-(52) and any t ∈ (0, T ], we have the following
data-stability estimates:
(i) If ωe0, ωm0 6= 0, then

E(t) 6 2E(0) +
4ε0ω

2
pe

ω2
e0

||f(0)||20 +
4µ0ω

2
pm

ω2
m0

||g(0)||20, (53)

where we denote the energy

E(t) = ε0||E(t)||20 + µ0||H(t)||20 +
1

ε0ω2
pe

||J ||20 +
1

µ0ω2
pm

||K||20

+
ω2
e0

ε0ω2
pe

∣∣∣∣∣∣∣∣∫ t

0
J(s)ds

∣∣∣∣∣∣∣∣2
0

+
ω2
m0

µ0ω2
pm

∣∣∣∣∣∣∣∣∫ t

0
K(s)ds

∣∣∣∣∣∣∣∣2
0

. (54)

Moreover, defining a new energy E1(t) as E(t) but without the integral terms in (54), we also have

E1(t) 6 E1(0) +
ε0ω

2
pe

ω2
e0

||f(0)||20 +
µ0ω

2
pm

ω2
m0

||g(0)||20, (55)

(ii) For the Lorentz and Drude models where Γe,Γm 6= 0 we have,

E(t) 6 E(0) + T

(
ε0ω

2
pe

Γe
||f(0)||20 +

µ0ω
2
pm

Γm
||g(0)||20

)
, (56)

where E(t) denotes the same energy as case (i).
(iii) For the cold plasma model where Γe = Γm = ωe0 = ωm0 = 0 we have,

E(t) 6 2E(0) +
4

ε0ω2
pe

||J(0)||20 +
4

µ0ω2
pm

||K(0)||20, (57)

where in this case the energy is re-defined as,

E(t) = ε0||E(t)||20 + µ0||H(t)||20
+ ε0ω

2
pe

∣∣∣∣∣∣∫ t0 E(s)ds
∣∣∣∣∣∣2

0
+ µ0ω

2
pm

∣∣∣∣∣∣∫ t0 H(s)ds
∣∣∣∣∣∣2

0
. (58)

Again, defining a new energy E1(t) by dropping the integral terms in (58), we also have

E1(t) 6 E1(0) +
1

ε0ω2
pe

||J(0)||20 +
1

µ0ω2
pm

||K(0)||20. (59)
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Proof. (i) Choosing φ = E,ψ = H,φ1 = J ,ψ1 = K in (49)-(51), respectively, we obtain

1

2

dE
dt

+
Γe
ε0ω2

pe

||J ||20 +
Γm

µ0ω2
pm

||K||20 = (f(0),J) + (g(0),K) (60)

and then integrating this from 0 to t and using the Cauchy-Schwarz and Young’s inequalities, we
have

1
2(E(t)− E(0)) 6

ε0ω2
pe

ω2
e0
||f(0)||20 +

µ0ω2
pm

ω2
m0
||g(0)||20

+
ω2
e0

4ε0ω2
pe

∣∣∣∣∣∣∫ t0 J(s)ds
∣∣∣∣∣∣2

0
+

ω2
m0

4µ0ω2
pm

∣∣∣∣∣∣∫ t0 K(s)ds
∣∣∣∣∣∣2

0
,

which yields (53) easily. The stability estimate in (55) can then be obtained from the following
inequality

1
2(E(t)− E(0)) 6

ε0ω2
pe

2ω2
e0
||f(0)||20 +

µ0ω2
pm

2ω2
m0
||g(0)||20

+
ω2
e0

2ε0ω2
pe

∣∣∣∣∣∣∫ t0 J(s)ds
∣∣∣∣∣∣2

0
+

ω2
m0

2µ0ω2
pm

∣∣∣∣∣∣∫ t0 K(s)ds
∣∣∣∣∣∣2

0
.

(ii) In this case, the proof is completed by substituting the following estimates

(f(0),J) 6
Γe

2ε0ω2
pe

||J ||20 +
ε0ω

2
pe

2Γe
||f(0)||20,

(g(0),K) 6
Γm

2µ0ω2
pm

||K||20 +
µ0ω

2
pm

2Γm
||g(0)||20,

into (60).
(iii) When Γe = Γm = ωe0 = ωm0 = 0, the original governing equations (13)-(18) reduce to

ε0Et −∇×H + J = 0, µ0Ht +∇×E +K = 0, (61)

J t = ε0ω
2
peE, Kt = µ0ω

2
pmH. (62)

Solving (62) for J and K and substituting into (61) gives,

ε0Et −∇×H + ε0ω
2
pe

∫ t

0
E(s)ds = −J(0), (63)

µ0Ht +∇×E + µ0ω
2
pm

∫ t

0
H(s)ds = −K(0), (64)

and then on multiplying (63) and (64) by E and H, respectively, integrating over Ω and using the
energy definition (58), we obtain

1

2

dE
dt

= −(J(0),E)− (K(0),H). (65)

Integrating (65) from 0 to t, and using the Cauchy-Schwarz inequality, we have

1
2(E(t)− E(0)) = −

(
J(0),

∫ t
0 E(s)ds

)
−
(
K(0),

∫ t
0 H(s)ds

)
6 1

ε0ω2
pe
||J(0)||20

+
ε0ω2

pe

4

∣∣∣∣∣∣∫ t0 E(s)ds
∣∣∣∣∣∣2

0
+

µ0ω2
pm

4

∣∣∣∣∣∣∫ t0 H(s)ds
∣∣∣∣∣∣2

0
+ 1

µ0ω2
pm
||K(0)||20,
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which easily leads to the proof of (57). To prove the stability bound in (59), we just need to use
the following estimate,

1

2
(E(t)− E(0)) = −

(
J(0),

∫ t

0
E(s)ds

)
−
(
K(0),

∫ t

0
H(s)ds

)
6

1

2ε0ω2
pe

||J(0)||20

+
ε0ω

2
pe

2

∣∣∣∣∣∣∣∣∫ t

0
E(s)ds

∣∣∣∣∣∣∣∣2
0

+
µ0ω

2
pm

2

∣∣∣∣∣∣∣∣∫ t

0
H(s)ds

∣∣∣∣∣∣∣∣2
0

+
1

2µ0ω2
pm

||K(0)||20.

This completes the proof. �

Remark 4.2 In Theorem 4.1 we examined the stability in three different cases and used more
careful reasoning than is usually encountered in this type of study in order to avoid using the
Gronwall inequality. To emphasize this extra effort we remark that from (60), the estimates

(f(0),J) + (g(0),K) 6
1

2ε0ω2
pe

||J ||20 +
ε0ω

2
pe

2
||f(0)||20 +

1

2µ0ω2
pm

||K||20 +
µ0ω

2
pm

2
||g(0)||20,

and the Gronwall inequality, we derive the following general stability estimate that covers all the
cases:

E(t) 6 C(E(0) + ||f(0)||20 + ||g(0)||20), (66)

where the constant C > 0 depends on those physical parameters in (3), and exponentially in T due
to the usage of the Gronwall inequality. Here the energy E is defined by

E(t) = ε0||E(t)||20 + µ0||H(t)||20 +
1

ε0ω2
pe

||J ||20 +
1

µ0ω2
pm

||K||20

+
ω2
e0

ε0ω2
pe

∣∣∣∣∣∣∣∣∫ t

0
J(s)ds

∣∣∣∣∣∣∣∣2
0

+
ω2
m0

µ0ω2
pm

∣∣∣∣∣∣∣∣∫ t

0
K(s)ds

∣∣∣∣∣∣∣∣2
0

. (67)

The main point here is that although one can derive coarse bounds without much effort, extra work
is (for this problem) rewarded with sharper estimates.

Theorem 4.1 demonstrates that one can consider the model on a case-by-case basis in terms of
the allowed values of the parameters. To save space and keep the arguments simple and demon-
strative we will from here on (unless clearly specified otherwise) assume that all parameters in (3)
are positive.

To begin with we let ĨJh
k

and ĨKh
k

denote trapezoidal rule quadrature approximations that
satisfy the following recursive formulas:

ĨJh
0

= 0, ĨJh
k

= ĨJh
k−1

+
τ

2
(Jkh + Jk−1

h ), ∀ k > 1, (68)

ĨKh
0

= 0, ĨKh
k

= ĨKh
k−1

+
τ

2
(Kk

h +Kk−1
h ), ∀ k > 1. (69)

Then, using the same spatial finite element discretization framework as earlier, we now consider
the following Crank-Nicolson scheme for solving the system (46)-(48): For k = 1, 2, · · · , N, find
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Ek
h ∈ V 0

h,J
k
h ∈ V h and Hk

h,K
k
h ∈ Uh such that

ε0(δτE
k
h,φh)− (H

k
h,∇× φh) + (J

k
h,φh) = 0, (70)

µ0(δτH
k
h,ψh) + (∇×Ek

h,ψh) + (K
k
h,ψh) = 0, (71)

1

ε0ω2
pe

(δτJ
k
h,φ1h) +

Γe
ε0ω2

pe

(J
k
h,φ1h)− (E

k
h,φ1h)

+
ω2
e0

ε0ω2
pe

(
ĨJh

k
+ ĨJh

k−1

2
,φ1h

)
= (f(0),φ1h), (72)

1

µ0ω2
pm

(δτK
k
h,ψ1h) +

Γm
µ0ω2

pm

(K
k
h,ψ1h)− (H

k
h,φ1h)

+
ω2
m0

µ0ω2
pm

(
ĨKh

k
+ ĨKh

k−1

2
,ψ1h

)
= (g(0),ψ1h), (73)

hold true for any φh ∈ V 0
h,ψh,ψ1h ∈ Uh,φ1h ∈ V h, and are subject to the initial approximations

E0
h(x) = ΠhE0(x), J0

h(x) = ΠhJ0(x),

H0
h(x) = Π2H0(x), K0

h(x) = Π2K0(x).

Next, we need the following identity for the stability analysis of scheme (70)-(69).

Lemma 4.3 For each i ∈ {1, . . . , N} we have

2

N∑
j=1

j−1∑
i=1

fifj =

(
N∑
i=1

fi

)2

−
N∑
i=1

f2
i . (74)

Proof. The proof follows from this simple manipulation,

2

N∑
j=1

j−1∑
i=1

fifj =

N∑
j=1

j−1∑
i=1

fifj +

N∑
j=1

N∑
i=j+1

fifj =

N∑
j=1

j−1∑
i=1

fifj +

N∑
i=j+1

fifj


=

N∑
j=1

(
N∑
i=1

fifj − f2
j

)
=

(
N∑
i=1

fi

)2

−
N∑
j=1

f2
j .

�
With Lemma 4.3 we can now provide the following discrete stability estimates. These are the

discrete forms of the estimates for the continuous problem as stated in Theorem 4.1.

Theorem 4.4 Denote the discrete energy

Eh(k) = ε0||Ek
h||20 + µ0||Hk

h||20 +
1

ε0ω2
pe

||Jkh||20 +
1

µ0ω2
pm

||Kk
h||20

then:
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(i) If ωe0, ωm0 6= 0, then for any 1 6 k 6 N , we have

Eh(k) 6 Eh(0) +
ε0ω

2
pe

ω2
e0

||f(0)||20 +
µ0ω

2
pm

ω2
m0

||g(0)||20. (75)

(ii) If Γe,Γm 6= 0, then for any 1 6 k 6 N , we have

Eh(k) 6 Eh(0) + T

(
ε0ω

2
pe

Γe
||f(0)||20 +

µ0ω
2
pm

Γm
||g(0)||20

)
. (76)

Proof. From the recursive formula (68), we have ĨJh
k

= ĨJh
k−1

+ τJ
k
h = · · · = τ

∑k
l=1 J

l
h, which

leads to(
ĨJh

k
+ ĨJh

k−1

2
, τJ

k
h

)
=

(
τ

2
J
k
h + τ

k−1∑
l=1

J
l
h, τJ

k
h

)
= τ2

[
1

2
||Jkh||20 +

k−1∑
l=1

(J
l
h,J

k
h)

]
.

Summing this from k = 1 to k = N and using Lemma 4.3, we have(
ĨJh

k
+ ĨJh

k−1

2
, τJ

k
h

)
=
τ2

2

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

J
k
h

∣∣∣∣∣
∣∣∣∣∣
2

0

. (77)

Choosing φh = τ
2 (Ek

h+Ek−1
h ),ψh = τ

2 (Hk
h+Hk−1

h ),φ1h = τ
2 (Jkh+Jk−1

h ), ψ1h = τ
2 (Kk

h+Kk−1
h )

in (70)-(73), respectively, then summing up the resultants from k = 1 to k = N and using (77), we
obtain

ε0
2 (||EN

h ||20 − ||E0
h||20) + µ0

2 (||HN
h ||20 − ||H0

h||20) + 1
2ε0ω2

pe
(||JNh ||20 − ||J0

h||20)

+ 1
2µ0ω2

pm
(||KN

h ||20 − ||K0
h||20) + τΓe

ε0ω2
pe

∑N
k=1 ||J

k
h||20

+ τΓm
µ0ω2

pm

∑N
k=1 ||K

k
h||20 +

τ2ω2
e0

2ε0ω2
pe

∣∣∣∣∣∣∑N
k=1 J

k
h

∣∣∣∣∣∣2
0

+
τ2ω2

m0
2µ0ω2

pm

∣∣∣∣∣∣∑N
k=1K

k
h

∣∣∣∣∣∣2
0

=
∑N

k=1 τ(f(0),J
k
h) +

∑N
k=1 τ(g(0),K

k
h). (78)

(i) The proof of (75) is completed by substituting the following estimates into (78):

τ

(
f(0),

N∑
k=1

J
k
h

)
6
ε0ω

2
pe

2ω2
e0

||f(0)||20 +
τ2ω2

e0

2ε0ω2
pe

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

J
k
h

∣∣∣∣∣
∣∣∣∣∣
2

0

,

τ

(
g(0),

N∑
k=1

K
k
h

)
6
µ0ω

2
pm

2ω2
m0

||g(0)||20 +
τ2ω2

m0

2µ0ω2
pm

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

K
k
h

∣∣∣∣∣
∣∣∣∣∣
2

0

.

(ii) Substituting the following estimates into (78),

τ(f(0),J
k
h) 6

τε0ω
2
pe

2Γe
||f(0)||20 +

τΓe
2ε0ω2

pe

||Jkh||20, (79)

τ(g(0),K
k
h) 6

τµ0ω
2
pm

2Γm
||g(0)||20 +

τΓm
2µ0ω2

pm

||Kk
h||20. (80)
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then concludes the proof of (76) �
To save space we did not consider the case Γe = Γm = ωe0 = ωm0 = 0 in Theorem 4.4 although

one could examine this case by following the argument given in Theorem 4.1 for the continuous
problem.

To give an error analysis for the Crank-Nicolson scheme (70)-(69) we need the following lemma.
The error estimate for the trapezoidal rule for numerical quadrature is very standard and included
here for completeness.

Lemma 4.5 Let X be a Banach space. For any function J ∈ H2(0, T ;X) we have the following
step-wise error bound,∣∣∣∣∣

∣∣∣∣∣Jk − 1

τ

∫ tk

tk−1

J(t)dt

∣∣∣∣∣
∣∣∣∣∣
2

X

6
τ3

4

∫ tk

tk−1

||Jtt(t)||2X dt, ∀ J ∈ H2(0, T ), (81)

for every k ∈ {1, 2, . . . , N}. Furthermore, for the approximation ĨJ
k

to
∫ tk

0 J(t) dt defined by the
recursive trapezoidal rule formula given by (68) we have the error bound,∣∣∣∣∣∣∣∣ĨJk − ∫ tk

0
J(t) dt

∣∣∣∣∣∣∣∣
X

6

√
Tτ2

2
‖Jtt‖L2(0,T ;X)

for every k ∈ {1, 2, . . . , N}.

Proof. For (81) we refer to [19, p.3165] and then using the triangle and Cauchy-Schwarz inequalities
we obtain, ∣∣∣∣∣∣∣∣ĨJk − ∫ tk

0
J(t) dt

∣∣∣∣∣∣∣∣
X

6
√
tk

 k∑
l=1

τ

∣∣∣∣∣
∣∣∣∣∣J l − 1

τ

∫ tl

tl−1

J(t) dt

∣∣∣∣∣
∣∣∣∣∣
2

X

1/2

and an application of (81) then completes the proof. �

Theorem 4.6 For the solution (Ek
h,H

k
h,J

k
h,K

k
h) of (70)-(73), we have the following error esti-

mate: For every time level k > 1,

ε0||Ek −Ek
h||20 + µ0||Hk −Hk

h||20 +
1

ε0ω2
pe

||Jk − Jkh||20

+
1

µ0ω2
pm

||Kk −Kk
h||20 6 C(1 + T 2 + T 3)(τ4 + h2l)

+ C(||E0 −E0
h||20 + ||H0 −H0

h||20 + ||J0 − J0
h||20 + ||K0 −K0

h||20), (82)

where l > 1 denotes the degree of the finite element spaces V h and Uh and C is a constant that
depends on time only through the Lp(0, T ) norms of the underlying solution that arise from the
approximation-error terms.

Remark 4.7 We do not give full details of the constant C in Theorem 4.6 because it would obscure
the main point that the constant governing the error growth (in the indicated norms) is of order
O(T 3/2) rather than O(ecT ) (for some c > 0). For a flavour of the type of terms hidden in C we
refer forward to (93).
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Proof. Integrating (49)-(51) with respect to t first from 0 to tk and then from 0 to tk−1, using these
to form finite differences in time and then dividing the resultants by τ , we obtain the following four
equalities

ε0(δτE
k,φ)−

(
1
τ

∫ tk
tk−1

Hds,∇× φ
)

+
(

1
τ

∫ tk
tk−1

Jds,φ
)

= 0, (83)

µ0(δτH
k,ψ) +

(
1
τ

∫ tk
tk−1
∇×Eds+ 1

τ

∫ tk
tk−1

Kds,ψ
)

= 0, (84)

1
ε0ω2

pe
(δτJ

k,φ1) + Γe
ε0ω2

pe

(
1
τ

∫ tk
tk−1

Jds,φ1

)
+

ω2
e0

ε0ω2
pe

(
1
τ

∫ tk
tk−1

∫ s
0 J(χ)dχds,φ1

)
=
(

1
τ

∫ tk
tk−1

Eds+ f(0),φ1

)
, (85)

1
µ0ω2

pm
(δτK

k,ψ1) + Γm
µ0ω2

pm

(
1
τ

∫ tk
tk−1

Kds,ψ1

)
+

ω2
m0

µ0ω2
pm

(
1
τ

∫ tk
tk−1

∫ s
0 K(χ)dχds,ψ1

)
=
(

1
τ

∫ tk
tk−1

Hds+ g(0),ψ1

)
. (86)

Now, to derive error equations we recall the definitions earlier near to (28) and (29) and set ξkh =
ΠhE

k −Ek
h ∈ V h, ηkh = Π2H

k −Hk
h ∈ Uh, ξk1h = ΠhJ

k − Jkh ∈ V h and ηk1h = Π2K
k −Kk

h ∈ Uh.
Subtracting (70)-(73) from (83)-(86) and using these definitions then gives four error equations:

(a) ε0(δτξ
k
h,φh)− (ηkh,∇× φh) + (ξ

k
1h,φh) = ε0(δτ (ΠhE

k −Ek),φh)

−

(
Π2H

k − 1

τ

∫ tk

tk−1

Hds,∇× φh

)
+

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds,φh

)
, (87)

(b) µ0(δτη
k
h,ψh) + (∇× ξkh,ψh) + (ηk1h,ψh) = µ0(δτ (Π2H

k −Hk),ψh)

+

(
∇×

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds

)
,ψh

)
+

(
Π2K

k − 1

τ

∫ tk

tk−1

Kds,ψh

)
, (88)

(c)
1

ε0ω2
pe

(δτξ
k
1h + Γeξ

k
1h,φ1h)− (ξ

k
h,φ1h) =

1

ε0ω2
pe

(δτ (ΠhJ
k − Jk),φ1h)

+
Γe
ε0ω2

pe

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds,φ1h

)
−

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds,φ1h

)

+
ω2
e0

ε0ω2
pe

(
ĨJh

k
+ ĨJh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
J(χ)dχds,φ1h

)
, (89)

(d)
1

µ0ω2
pm

(δτη
k
1h + Γmη

k
1h,ψ1h)− (ηkh,ψ1h) =

1

µ0ω2
pm

(δτ (Π2K
k −Kk),ψ1h)

+
Γm

µ0ω2
pm

(
Π2K

k − 1

τ

∫ tk

tk−1

Kds,ψ1h

)
−

(
Π2H

k − 1

τ

∫ tk

tk−1

Hds,ψ1h

)

+
ω2
m0

µ0ω2
pm

(
ĨKh

k
+ ĨKh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
K(χ)dχds,ψ1h

)
. (90)

In the above we also recalled that ∇× V h ⊂ Uh.

Next we select φh = τξ
k
h, ψh = τηkh, φ1h = τξ

k
1h, ψ1h = τηk1h in (87)-(90) and note that

several terms can be altered or eliminated by using the L2 projection. Specifically, the following
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replacements can be made,

(Π2H
k
,∇× ξkh) = (H

k
,∇× ξkh), (Π2H

k
, ηk1h) = (H

k
, ηk1h),

(Π2K
k
, ηkh) = (K

k
, ηkh), (Π2K

k
, ηk1h) = (K

k
, ηk1h),

and the eliminations result from (δτ (Π2H
k −Hk), ηkh) = (δτ (Π2K

k −Kk), ηk1h) = 0. These give,

ε0
2

(||ξkh||20 − ||ξk−1
h ||20) +

µ0

2
(||ηkh||20 − ||ηk−1

h ||20)

+
1

2ε0ω2
pe

(||ξk1h||20 − ||ξk−1
1h ||

2
0) +

1

2µ0ω2
pm

(||ηk1h||20 − ||ηk−1
1h ||

2
0)

+
τΓe
ε0ω2

pe

||ξk1h||20 +
τΓm
µ0ω2

pm

||ηk1h||20 = τε0(δτ (ΠhE
k −Ek), ξ

k
h)

−τ

(
H

k − 1

τ

∫ tk

tk−1

Hds,∇× ξkh

)
+ τ

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds, ξ
k
h

)

+τ

(
∇×

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds

)
, ηkh

)
+ τ

(
K

k − 1

τ

∫ tk

tk−1

Kds, ηkh

)

+
τ

ε0ω2
pe

(δτ (ΠhJ
k − Jk), ξk1h) +

τΓe
ε0ω2

pe

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds, ξ
k
1h

)

+
τω2

e0

ε0ω2
pe

(
ĨJh

k
+ ĨJh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
J(χ)dχds, ξ

k
1h

)

+
τΓm
µ0ω2

pm

(
K

k − 1

τ

∫ tk

tk−1

Kds, ηk1h

)
− τ

(
H

k − 1

τ

∫ tk

tk−1

Hds, ηk1h

)

+
τω2

m0

µ0ω2
pm

(
ĨKh

k
+ ĨKh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
K(χ)dχds, ηk1h

)

−τ

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds, ξ
k
1h

)
=

12∑
i=1

Erri, (91)

where these twelve error terms have been introduced for convenience and we deal with them each in
turn. For the remainder of this proof C will denote a generic positive constant that is independent
of time, h, τ and the exact or approximate solutions.

First, by the Cauchy-Schwarz inequality, the standard interpolation error estimate (29) for
ΠhE −E, and the following estimate [19, p.3165]:

||δτuk||20 6
1

τ

∫ tk

tk−1

||ut(t)||20dt, ∀ u ∈ H1(0, T ; (L2(Ω))3),
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we have

Err1 6 τε0||δτ (ΠhE
k −Ek)||0||ξ

k
h||0

6 τε0 ·
δ1

T
||ξh||2l∞ +

Tε0
4δ1

∫ tk

tk−1

||(ΠhE −E)s(s)||20ds

6 τε0 ·
δ1

T
||ξh||2l∞ +

CTh2l

4δ1

∫ tk

tk−1

||Et||2Hl(curl;Ω)ds, (92)

where here and below δi will denote an arbitrary positive number and we define ||ξh||l∞ :=
max16k6N ||ξkh||0. Summing (92) from k = 1 to N , we therefore have

N∑
k=1

Err1 6 δ1ε0||ξh||2l∞ +
CTh2l

δ1
||Et||2L2(0,T ;Hl(curl;Ω)).

Similarly, by using Lemma 4.5 to obtain the following estimate,∣∣∣∣∣
∣∣∣∣∣uk − 1

τ

∫ tk

tk−1

u(t)dt

∣∣∣∣∣
∣∣∣∣∣
2

0

6
τ3

4

∫ tk

tk−1

||utt(t)||20dt, ∀ u ∈ H2(0, T ; (L2(Ω))3),

and integrating by parts to move the curl we obtain,

N∑
k=1

Err2 6
N∑
k=1

τ

∣∣∣∣∣
∣∣∣∣∣∇×

(
H

k − 1

τ

∫ tk

tk−1

Hds

)∣∣∣∣∣
∣∣∣∣∣
0

||ξkh||0

6
N∑
k=1

τ

(
Tτ3

16δ2

∫ tk

tk−1

||∇ ×Htt||20 dt+
δ2

T
||ξh||2l∞

)

6 δ2||ξh||2l∞ +
Tτ4

16δ2
||∇ ×Htt||2L2(0,T ;L2(Ω)).
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By similar techniques, we have the following estimates:

N∑
k=1

Err3 6
N∑
k=1

τ δ3

T
||ξkh||20 +

Tτ

2δ3

||ΠhJ
k − Jk||20 +

∣∣∣∣∣
∣∣∣∣∣Jk − 1

τ

∫ tk

tk−1

Jds

∣∣∣∣∣
∣∣∣∣∣
2

0


6 δ3||ξh||2l∞ +

CT

δ3

(
τ4||J tt||2L2(0,T ;L2(Ω)) + Th2l||J ||2L∞(0,T ;Hl(curl;Ω))

)
,

N∑
k=1

Err4 6 δ4||ηh||2l∞+
CT

δ4

(
τ4||∇ ×Ett||2L2(0,T ;L2(Ω)) + Th2l||E||2L∞(0,T ;Hl(curl;Ω))

)
,

N∑
k=1

Err5 6 δ5||ηh||2l∞ +
Tτ4

16δ5
||Ktt||2L2(0,T ;L2(Ω)),

N∑
k=1

Err6 6
δ6

ε0ω2
pe

||ξ1h||2l∞ +
CTh2l

δ6
||J t||2L2(0,T ;Hl(curl;Ω)),

N∑
k=1

Err7 6
δ7

ε0ω2
pe

||ξ1h||2l∞+
CT

δ7

(
τ4||J tt||2L2(0,T ;L2(Ω)) + Th2l||J ||2L∞(0,T ;Hl(curl;Ω))

)
,

N∑
k=1

Err9 6 δ9||η1h||2l∞ +
Tτ4

16δ9
||Ktt||2L2(0,T ;L2(Ω)),

N∑
k=1

Err10 6 δ10||η1h||2l∞ +
Tτ4

16δ10
||Htt||2L2(0,T ;L2(Ω)),

N∑
k=1

Err12 6 δ12||ξ1h||2l∞ +
CT

δ12

(
τ4||Ett||2L2(0,T ;L2(Ω)) + Th2l||E||2L∞(0,T ;Hl(curl;Ω))

)
.

We now move on to investigate the more difficult terms, Err8 and Err11. Since they are similar

we give the detailed working only for Err8. First, recalling (68) and the introduction of ĨJ
k

in
Lemma 4.5, a simple splitting gives,(

ε0ω
2
pe

τω2
e0

)
Err8 =

(
ĨJh

k
+ ĨJh

k−1

2
− ĨJ

k
+ ĨJ

k−1

2
, ξ
k
1h

)

+

(
ĨJ

k
+ ĨJ

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
J(χ) dχds, ξ

k
1h

)
.
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Using the recursive formulas (68), and recalling that J
l

= (J(tl) + J(tl−1))/2 we have,

ĨJh
k

+ ĨJh
k−1

2
− ĨJ

k
+ ĨJ

k−1

2
=
τ

2
(J

k
h − J

k
) + τ

k−1∑
l=1

(J
l
h − J

l
)

=
τ

2
(J

k
h −ΠhJ

k
+ ΠhJ

k − Jk) + τ
k−1∑
l=1

(J
l
h −ΠhJ

l
+ ΠhJ

l − J l)

=
τ

2
(−ξk1h + ΠhJ

k − Jk) + τ
k−1∑
l=1

(−ξl1h + ΠhJ
l − J l)

and with this we can now split Err8 into three components:(
ε0ω

2
pe

τω2
e0

)
Err8 = −

(
τ

2
(ξ
k
1h, ξ

k
1h) + τ

k−1∑
l=1

(ξ
l
1h, ξ

k
1h)

)

+
τ

2

(
ΠhJ

k − Jk, ξk1h
)

+ τ

k−1∑
l=1

(
ΠhJ

l − J l, ξk1h
)

+

(
ĨJ

k
+ ĨJ

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
J(χ) dχds, ξ

k
1h

)
= E1 + E2 + E3.

The next step is to sum this over k = 1, . . . , N and, first, from Lemma 4.3,

N∑
k=1

E1 = −τ
2

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

ξ
i
1h

∣∣∣∣∣
∣∣∣∣∣
2

0

6 0

and so can be discarded. For E2 we get,

E2 6
τ

2
||ΠhJ

k − Jk||0 ||ξ
k
1h||0 + τ

k−1∑
i=1

||ΠhJ
i − J i||0 ||ξ

k
1h||0

6 CThl||J ||L∞(0,T ;Hl(curl;Ω))||ξ
k
1h||0

after using (29). Lastly, noting that

ĨJ
k

+ ĨJ
k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0
J(χ) dχds

=
ĨJ

k
+ ĨJ

k−1

2
− 1

2

(∫ tk

0
J(s) ds+

∫ tk−1

0
J(s) ds

)
+

1

2

(∫ tk

0
J(s) ds+

∫ tk−1

0
J(s) ds

)
− 1

τ

∫ tk

tk−1

∫ s

0
J(χ) dχds

=
1

2

(
ĨJ

k
−
∫ tk

0
J(s) ds

)
+

1

2

(
ĨJ

k−1
−
∫ tk−1

0
J(s) ds

)
− 1

τ

(∫ tk

tk−1

∫ s

0
J(χ) dχ ds− τ

2

(∫ tk

0
J(χ) dχ+

∫ tk−1

0
J(χ) dχ

))
.
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Using this with Lemma 4.5 then gives,

E3 6
1

2
||ξk1h||0

(√
Tτ2||J tt||L2(0,tk;L2(Ω)) + τ3/2||J t||L2(tk−1,tk;L2(Ω)

)
.

Finally, we return to Err8, sum over k = 1, . . . , N , use these results with two Young’s inequalities
and infer the analogous result for Err11 to obtain,

N∑
k=1

Err8 +
N∑
k=1

Err11 6
τΓe

2ε0ω2
pe

N∑
k=1

||ξk1h||20 +
τΓm

2µ0ω2
pm

N∑
k=1

||ηk1h||20

+ CT 3h2l||J ||2L∞(0,T ;Hl(curl;Ω)) + C(1 + T 2)τ4||J t||2H1(0,T ;L2(Ω))

+ CT 3h2l||K||2L∞(0,T ;Hl(Ω)) + C(1 + T 2)τ4||Kt||2H1(0,T ;L2(Ω)). (93)

The proof is now completed first by assembling all of these estimates and choosing the δi so that
each term can be controlled by ‘kicking-back’ the corresponding left-hand side term. The last two
steps are to take the maximum with respect to N and then use triangle inequality along with
approximation results to restore the full error terms to the left hand side. �

5 Conclusions

We have presented two practical schemes for the time-domain simulation of Maxwell’s equations for
Lorenz metamaterials. In each case we have provided data-stability estimates for both the contin-
uous and discrete problems without using Gronwall inequalities. As a result the constants in these
estimates do not grow exponentially in T . Instead the constant is either bounded independently of
T , as in Theorems 3.1, 4.1 and 4.4 or grows with T 1/2, as in Theorems 4.1 and 4.4. We also gave
one extensive example, Theorem 4.6, to demonstrate how these arguments can be extended to an
a priori error analysis and this showed that the constant in the error bound is of order O(T 3/2)
in that case. As a result, apart from this moderate (at least, as compared to exp(cT )) growth
in the constant the error growth can be expected to be dominated only by the underlying time
dependence in the higher derivatives of the exact solution and data.

Acknowledgments. We like to thank the anonymous referees for their helpful comments that
improved the paper.
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