823 research outputs found

    Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics

    Full text link
    When Lenz proposed a simple model for phase transitions in magnetism, he couldn't have imagined that the "Ising model" was to become a jewel in field of equilibrium statistical mechanics. Its role spans the spectrum, from a good pedagogical example to a universality class in critical phenomena. A quarter century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing a seemingly trivial modification to the Ising lattice gas, they took it into the vast realms of non-equilibrium statistical mechanics. An abundant variety of unexpected behavior emerged and caught many of us by surprise. We present a brief review of some of the new insights garnered and some of the outstanding puzzles, as well as speculate on the model's role in the future of non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting, Rutgers, NJ (December, 2008

    Responding to pupil led tangential thinking: a case study of teaching romantic poetry in a post-16 setting

    Get PDF
    This paper considers alternative ways of teaching Romantic poetry to post-sixteen English Literature pupils in England. It explores how practitioners can value tangents developed by pupils’ independent thinking when pupils are given the freedom to develop their own ideas. It reflects on a lesson planned to respond to a tangent developed by the class in a previous session; that William Blake’s “The Tyger”, to a contemporary reader, explores the 21st century preoccupation of climate change. The lesson outlined in this report built upon these ideas further, valuing the pupils’ tangential thinking. Approaches like these are particularly important now as the performativity agenda in schools, promoted by league tables as a measure of effectiveness, can result in some schools teaching to the test, at the exclusion of encouraging personal and creative responses to texts

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N(1535)N^{*}(1535), these are: N(1440),N(1520),N(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N(1710)N^{*}(1710). The amplitudes for the π\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×101GeV1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×101GeV1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N(1535)γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×103GeV1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×103GeV1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms.This work was supported as a Science Innovation Project by the Department of Agriculture, Water and the Environment’s Science Innovation Program funding 2021–22 (project team: A.J.M., L.J.C., D.M.B., C.K.K., J.S.S. and L.S.). Support was also provided (to J.D.S, E.L.J., S.A.R., J.S.S., M.I.S., J.M.S., N.G.W.) from Australian Research Council SRIEAS grant SR200100005. P.C. and K.A.H. are supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team and Environment Office, respectively. L.R.P. and M.G. are supported by Biodiversa ASICS funding

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore