7 research outputs found

    The impact of routine surveillance screening with magnetic resonance imaging (MRI) to detect tumour recurrence in children with central nervous system (CNS) tumours : Protocol for a systematic review and meta-analysis

    Get PDF
    Background: The aim of this study is to assess the impact of routine MRI surveillance to detect tumour recurrence in children with no new neurological signs or symptoms compared with alternative follow-up practices, including periodic clinical and physical examinations and the use of non-routine imaging upon presentation with disease signs or symptoms. Methods: Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction. Ten electronic databases have been searched, and further citation searching and reference checking will be employed. Randomised and non-randomised controlled trials assessing the impact of routine surveillance MRI to detect tumour recurrence in children with no new neurological signs or symptoms compared to alternative follow-up schedules including imaging upon presentation with disease signs or symptoms will be included. The primary outcome is time to change in therapeutic intervention. Secondary outcomes include overall survival, surrogate survival outcomes, response rates, diagnostic yield per set of images, adverse events, quality of survival and validated measures of family psychological functioning and anxiety. Two reviewers will independently screen and select studies for inclusion. Quality assessment will be undertaken using the Cochrane Collaboration's tools for assessing risk of bias. Where possible, data will be summarised using combined estimates of effect for time to treatment change, survival outcomes and response rates using assumption-free methods. Further sub-group analyses and meta-regression models will be specified and undertaken to explore potential sources of heterogeneity between studies within each tumour type if necessary. Discussion: Assessment of the impact of surveillance imaging in children with CNS tumours is methodologically complex. The evidence base is likely to be heterogeneous in terms of imaging protocols, definitions of radiological response and diagnostic accuracy of tumour recurrence due to changes in imaging technology over time. Furthermore, the delineation of tumour recurrence from either pseudo-progression or radiation necrosis after radiotherapy is potentially problematic and linked to the timing of follow-up assessments. However, given the current routine practice of MRI surveillance in the follow-up of children with CNS tumours in the UK and the resource implications, it is important to evaluate the cost-benefit profile of this practice. Systematic review registration: PROSPERO CRD4201603680

    Ahi1 Mutations Cause Both Retinal Dystrophy and Renal Cystic Disease in Joubert Syndrome

    No full text
    Background: Joubert syndrome (JS) is an autosomal recessive disorder characterised by hypotonia, ataxia, mental retardation, altered respiratory pattern, abnormal eye movements, and a brain malformation known as the molar tooth sign (MTS) on cranial MRI. Four genetic loci have been mapped, with two genes identified (AHI1 and NPHP1). Methods: We screened a cohort of 117 JS subjects for AHI1 mutations by a combination of haplotype analysis and sequencing of the gene, and for the homozygous NPHP1 deletion by sequencing and marker analysis. Results: We identified a total of 15 novel AHI1 mutations in 13 families, including nonsense, missense, splice site, and insertion mutations, with some clustering in the WD40 domains. Eight families were consanguineous, but no single founder mutation was apparent. In addition to the MTS, retinal dystrophy was present in 11 of 12 informative families; however, no subjects exhibited variable features of JS such as polydactyly, encephalocele, colobomas, or liver fibrosis. In contrast to previous reports, we identified two families with affected siblings who developed renal disease consistent with nephronophthisis (NPH) in their 20s. In addition, two individuals with classic NPH were found to have homozygous NPHP1 deletions. Conclusions: Overall, 11% of subjects had AHI1 mutations, while similar to 2% had the NPHP1 deletion, representing a total of less than 15% in a large JS cohort. Some preliminary genotype- phenotype correlations are possible, notably the association of renal impairment, specifically NPH, in those with NPHP1 deletions. Subjects with AHI1 mutations may be at risk of developing both retinal dystrophy and progressive kidney disease
    corecore