30 research outputs found

    One Health in schools: Extending the One Health approach to safety around animals

    Get PDF

    Work Package 1 update: Lessons and experience exchange

    Get PDF

    One Health in action: Perspectives from 10 years in the field

    Get PDF

    COHESA Work Package 1 - One Health Status

    Get PDF

    Pharma to Farmer: Field Challenges of Optimizing Trypanocide use in African Animal Trypanosomiasis

    Get PDF
    Trypanocides are a key control component of African animal trypanosomiasis (AAT) in tsetse-infested areas of sub-Saharan Africa. While farmers are dependent upon trypanocides, recent research highlights their inappropriate and ineffective use, problems with drug quality, and treatment failure. There are currently gaps in knowledge and investment in inexpensive AAT diagnostics, understanding of drug resistance, and the effective use of trypanocides in the field. Without this important knowledge it is difficult to develop best practice and policy for existing drugs or to inform development and use of new drugs. There needs to be better understanding of the drivers and behavioural practices around trypanocide use so that they can be incorporated into sustainable solutions needed for the development of effective control of AAT

    Lack of Antinociceptive Cross-Tolerance With Co-Administration of Morphine and Fentanyl Into the Periaqueductal Gray of Male Sprague-Dawley Rats

    Get PDF
    Tolerance to the antinociceptive effect of mu-opioid receptor (MOPr) agonists, such as morphine and fentanyl, greatly limits their effectiveness for long-term use to treat pain. Clinical studies have shown that combination therapy and opioid rotation can be used to enhance opioid-induced antinociception once tolerance has developed. The mechanism and brain regions involved in these processes are unknown. The purpose of this study was to evaluate the contribution of the ventrolateral periaqueductal gray (vlPAG) to antinociceptive tolerance and cross-tolerance between administration and co- administration of morphine and fentanyl. Tolerance was induced by pretreating rats with morphine or fentanyl or low-dose combination of morphine and fentanyl into the vlPAG followed by assessment of cross-tolerance to the other opioid. In addition, tolerance to the combined treatment was assessed. Cross-tolerance did not develop between repeated vlPAG microinjections of morphine and fentanyl. Likewise, there was no evidence of cross-tolerance from morphine or fentanyl to co-administration of morphine and fentanyl. Co-administration did not cause cross-tolerance to fentanyl. Cross- tolerance was only evident to morphine or morphine and fentanyl combined in rats pretreated with co-administration of low-doses of morphine and fentanyl. In conclusion, cross-tolerance does not develop between morphine and fentanyl within the vlPAG. This finding is consistent with the functionally selective signaling that has been reported for antinociception and tolerance following morphine and fentanyl binding to the MOPr. This research supports the notion that combination therapy and opioid rotation may be useful clinical practices to reduce opioid tolerance and other side effects. Perspective: This preclinical study shows that there is a reduction in cross tolerance between morphine and fentanyl within the periaqueductal gray which is key brain region in opioid antinociception and tolerance
    corecore