10 research outputs found

    Multitemporal Cloud Detection and Masking Using MODIS Data

    Get PDF
    Abstract The aims of this study are to investigate the spectral properties of cloud and to carry out cloud detection and masking using MODIS (Moderate-resolution Imaging Spectroradiometer) data. To do this we make use of the spectrally rich satellite data provided by MODIS sensor, which is equipped with 36 bands ranging from visible to thermal wavelengths. Cloud detection and masking were first carried out individually using single date of MODIS data. Multitemporal cloud analysis was later carried out using MODIS data from 24 different dates from 2004 to 2005. The eastern parts of Malaysia were found to have more cloudy days than the western parts, in which consistence with the meteorological observations made by the Malaysian Meteorological Services

    Silver triflate catalyzed cyclopropyl carbinol rearrangement for benzo[b]oxepine and 2H-chromene synthesis

    No full text
    An efficient AgOTf-catalyzed (TfO = trifluoromethanesulfonate) cyclopropyl carbinol rearrangement for the synthesis of benzo[b]oxepines and 2H-chromenes is reported by starting from 2-[cyclopropyl(hydroxy)methyl]phenols. The reactions proved to be general in scope and furnished a range of the corresponding functionalized oxygen heterocycles. The formation of the benzo-fused six-membered adduct is proposed to result from the ring-contraction of the benzo[b]oxepine derivative. Control of the product selectivity is achievable by fine-tuning the reaction time. The catalytic synergy between the silver(I) cation and the triflate anion was essential for optimal product yields

    Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells

    No full text
    Gene editing by homology-directed recombination (HDR) can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR) T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC) locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA) CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics

    Chronic activation of human cardiac fibroblasts in vitro attenuates the reversibility of the myofibroblast phenotype

    Get PDF
    Abstract Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-β) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-β receptor inhibition. Culture on softer plates (25 or 2 kPa Young’s modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-β inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-β receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-β signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts

    The Investment CAPM

    No full text

    36-month clinical outcomes of patients with venous thromboembolism: GARFIELD-VTE

    Get PDF
    Background: Venous thromboembolism (VTE), encompassing both deep vein thrombosis (DVT) and pulmonary embolism (PE), is a leading cause of morbidity and mortality worldwide.Methods: GARFIELD-VTE is a prospective, non-interventional observational study of real-world treatment practices. We aimed to capture the 36-month clinical outcomes of 10,679 patients with objectively confirmed VTE enrolled between May 2014 and January 2017 from 415 sites in 28 countries.Findings: A total of 6582 (61.6 %) patients had DVT alone, 4097 (38.4 %) had PE +/- DVT. At baseline, 98.1 % of patients received anticoagulation (AC) with or without other modalities of therapy. The proportion of patients on AC therapy decreased over time: 87.6 % at 3 months, 73.0 % at 6 months, 54.2 % at 12 months and 42.0 % at 36 months. At 12-months follow-up, the incidences (95 % confidence interval [CI]) of all-cause mortality, recurrent VTE and major bleeding were 6.5 (7.0-8.1), 5.4 (4.9-5.9) and 2.7 (2.4-3.0) per 100 person-years, respectively. At 36-months, these decreased to 4.4 (4.2-4.7), 3.5 (3.2-2.7) and 1.4 (1.3-1.6) per 100 person-years, respectively. Over 36-months, the rate of all-cause mortality and major bleeds were highest in patients treated with parenteral therapy (PAR) versus oral anti-coagulants (OAC) and no OAC, and the rate of recurrent VTE was highest in patients on no OAC versus those on PAR and OAC. The most frequent cause of death after 36-month follow-up was cancer (n = 565, 48.6 %), followed by cardiac (n = 94, 8.1 %), and VTE (n = 38, 3.2 %). Most recurrent VTE events were DVT alone (n = 564, 63.3 %), with the remainder PE, (n = 236, 27.3 %), or PE in combination with DVT (n = 63, 7.3 %).Interpretation: GARFIELD-VTE provides a global perspective of anticoagulation patterns and highlights the accumulation of events within the first 12 months after diagnosis. These findings may help identify treatment gaps for subsequent interventions to improve patient outcomes in this patient population

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore