1,069 research outputs found

    Revisiting two-step Forbush decreases

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles

    Multidimensional spectroscopy with a single broadband phase-shaped laser pulse

    Full text link
    We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two dimensional signals obtained by varying the detected frequency and phase parameters are presented for a three electronic band model system. We demonstrate how two-photon and stimulated Raman resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be suppressed.Comment: 26 pages, 15 figure

    Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections

    Get PDF
    [1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd

    Postcolonial Publics: Art and Citizen Media in Europe

    Get PDF
    Postcolonial Publics: Art and Citizen Media in Europe presents a collection of six- teen chapters that explore the themes of how migrants, refugees and citizens express and share their political and social causes and experiences through art and media. These expressions, which we term ‘citizen media’, arguably become a platform for postcolonial intellectuals as the studies pursued in this volume investigate the different ways in which previously excluded social groups regain public voice. The volume strives to understand the different articulations of mi- grants’, refugees’, and citizens’ struggle against increasingly harsh European pol- itics that allow them to achieve and empower political subjectivity in a mediated and creative space. In this way, the contributions in this volume present case studies of citizen media in the form of ‘activistic art’ or ‘artivism’ (Trandafoiu, Ruffini, Cazzato & Taronna, Koobak & Tali, Negrón-Muntaner), activism through different kinds of technological media (Chouliaraki and Al-Ghazzi, Jedlowski), such as documentaries and film (Denić), podcasts, music and soundscapes (Ro- meo and Fabbri, Western, Lazzari, Huggan), and activisms through writings from journalism to fiction (Longhi, Concilio, Festa, De Capitani). The volume argues that citizen media go hand in hand with postcolonial critique because of their shared focus on the deconstruction and decolonisation of Western logics and narratives. Moreover, both question the concept of citizen and of citizenship as they relate to the nation-state and explores the power of media as a tool for participation as well as an instrument of political strength. The book forwards postcolonial artivism and citizen media as a critical framework to understand the refugee and migrant situations in contemporary Europe

    Single-electron counting spectroscopy: simulation study of porphyrin in a molecular junction

    Get PDF
    Electron counting of a single porphyrin molecule between two electrodes shows a crossover from sub- to super-Poissonian statistics as the bias voltage is scanned. This is attributed to the simultaneous activation of states with electron transfer rates spanning several orders of magnitude. Time-series analysis of consecutive single electron transfer events reveals fast and slow transport channels, which are not resolved by the average current alone.Comment: 5 pages, 5 figure

    Cathodoluminescence-based nanoscopic thermometry in a lanthanide-doped phosphor

    Get PDF
    Crucial to analyze phenomena as varied as plasmonic hot spots and the spread of cancer in living tissue, nanoscale thermometry is challenging: probes are usually larger than the sample under study, and contact techniques may alter the sample temperature itself. Many photostable nanomaterials whose luminescence is temperature-dependent, such as lanthanide-doped phosphors, have been shown to be good non-contact thermometric sensors when optically excited. Using such nanomaterials, in this work we accomplished the key milestone of enabling far-field thermometry with a spatial resolution that is not diffraction-limited at readout. We explore thermal effects on the cathodoluminescence of lanthanide-doped NaYF4_4 nanoparticles. Whereas cathodoluminescence from such lanthanide-doped nanomaterials has been previously observed, here we use quantitative features of such emission for the first time towards an application beyond localization. We demonstrate a thermometry scheme that is based on cathodoluminescence lifetime changes as a function of temperature that achieves ∼\sim 30 mK sensitivity in sub-μ\mum nanoparticle patches. The scheme is robust against spurious effects related to electron beam radiation damage and optical alignment fluctuations. We foresee the potential of single nanoparticles, of sheets of nanoparticles, and also of thin films of lanthanide-doped NaYF4_4 to yield temperature information via cathodoluminescence changes when in the vicinity of a sample of interest; the phosphor may even protect the sample from direct contact to damaging electron beam radiation. Cathodoluminescence-based thermometry is thus a valuable novel tool towards temperature monitoring at the nanoscale, with broad applications including heat dissipation in miniaturized electronics and biological diagnostics.Comment: Main text: 30 pages + 4 figures; supplementary information: 22 pages + 8 figure

    Systematic Determination of Absolute Absorption Cross-section of Individual Carbon Nanotubes

    Full text link
    Determination of optical absorption cross-section is always among the central importance of understanding a material. However its realization on individual nanostructures, such as carbon nanotubes, is experimentally challenging due to the small extinction signal using conventional transmission measurements. Here we develop a technique based on polarization manipulation to enhance the sensitivity of single-nanotube absorption spectroscopy by two-orders of magnitude. We systematically determine absorption cross-section over broad spectral range at single-tube level for more than 50 chirality-defined single-walled nanotubes. Our data reveals chirality-dependent one-dimensional photo-physics through the behaviours of exciton oscillator strength and lifetime. We also establish an empirical formula to predict absorption spectrum of any nanotube, which provides the foundation to determine quantum efficiencies in important photoluminescence and photovoltaic processes

    Short-period variability in the galactic cosmic ray intensity: High statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006

    Get PDF
    On 20 August 2006 a Forbush decrease observed at Polar in the Earth's magnetosphere was also seen at the INTEGRAL spacecraft outside the magnetosphere during a very active time in the solar wind. High-resolution energetic particle data from ACE SIS, the Polar high-sensitivity telescope, and INTEGRAL's Ge detector saturation rate, which measures the galactic cosmic ray (GCR) background with a threshold of similar to 200 MeV, show similar, short-period GCR variations in and around the Forbush decrease. Focusing upon the GCR intensity within a 3-day interval from 19 August 2006 to 21 August 2006 reveals many intensity variations in the GCR on a variety of time scales and amplitudes. These intensity variations are greater than the 3 sigma error in all the data sets used. The fine structures in the GCR intensities along with the Forbush decrease are propagated outward from ACE to the Earth with very little change. The solar wind speed stays relatively constant during these periods, indicating that parcels of solar wind are transporting the GCR population outward in the heliosphere. This solar wind convection of GCR fine structure is observed for both increases and decreases in GCR intensity, and the fine structure increases and decreases are bracketed by solar wind magnetic field discontinuities associated with interplanetary coronal mass ejection (ICME) magnetosheath regions, clearly seen as discontinuous rotations of the field components at ACE and at Wind. Interestingly, the electron heat flux shows different flux tube connectivity also associated with the different regions of the ICME and magnetosheath. Gosling et al. (2004) first discussed the idea that solar energetic particle intensities commonly undergo dispersionless modulation in direct association with discontinuous changes in the solar wind electron strahl. The observations show that the intensity levels in the GCR flux may undergo a similar partitioning, possibly because of the different magnetic field regions having differing magnetic topologies
    • …
    corecore