59 research outputs found

    Tests of prototype PCM 'sails' for office cooling

    Get PDF
    This is the post-print version of the final paper published in Applied Thermal Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.PCM modules, constructed from a paraffin/LDPE composite, were tested in an occupied London office, in summer. Design variations tested the effect on heat transfer of a black paint or aluminium surface, the effect of different phase transition zones and the effect of discharging heat inside or outside. The modules’ temperatures were monitored along with airflow rate, air temperature and globe temperature. Their small size meant any effect on room temperature was negligible. Using DSC measurements of the PCMs’ thermophysical properties, in conjunction with the environmental measurements, a semi-empirical model of the modules was constructed in FLUENT using an enthalpy-porosity formulation to model phase change. Good validation was obtained for all modules using the temperature measurements with notable divergence when maximum liquid fraction was reached. The model was validated by the temperature measurements and used to generate mean liquid fraction and surface heat transfer rate profiles for performance comparisons. The broad phase transition zones of the PCMs results in wasted latent heat capacity. Black modules transfer heat and exhaust latent storage capacity significantly quicker than aluminium modules, due to radiant exchange. Discharging heat outside leads to an increase in thermal storage capacity and a higher rate of heat absorption.Buro Happold Engineers and the EPSRC

    IPACK2005-73113 TRANSIENT PERFORMANCE OF A FINNED PCM HEAT SINK

    No full text
    ABSTRACT The present study explores numerically the transient performance of a heat sink based on a phase change material (PCM), during the process of melting. Heat is transferred to the sink through its horizontal base, to which vertical fins made of aluminum are attached. The phase change material is stored between the fins. Its properties, including the melting temperature, latent and sensible specific heat, thermal conductivity and density in solid and liquid states, are based on a commercially available paraffin wax. A parametric investigation is performed for melting in a relatively small system, 10mm high, where the fin thickness is 1.2mm, and the distance between the fins varies from 2mm to 8mm. The temperature of the base varies from 12°C to 24°C above the mean melting temperature of the PCM. Transient numerical simulations are performed, yielding temperature evolution in the fins and the PCM. The computational results show how the transient phase-change process, expressed in terms of the volume melt fraction of the PCM, depends on the thermal and geometrical parameters of the system, which relate to the temperature difference between the base and the mean melting temperature, and to the thickness of the PCM laye

    A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals

    Get PDF
    The effects of metal foams on heat transfer enhancement in Phase Change Materials (PCMs) are investigated. The numerical investigation is based on the two-equation non-equilibrium heat transfer model, in which the coupled heat conduction and natural convection are considered at phase transition and liquid zones. The numerical results are validated by experimental data. The main findings of the investigation are that heat conduction rate is increased significantly by using metal foams, due to their high thermal conductivities, and that natural convection is suppressed owing to the large flow resistance in metal foams. In spite of this suppression caused by metal foams, the overall heat transfer performance is improved when metal foams are embedded into PCM; this implies that the enhancement of heat conduction offsets or exceeds the natural convection loss. The results indicate that for different metal foam samples, heat transfer rate can be further increased by using metal foams with smaller porosities and bigger pore densities
    • …
    corecore