1,201 research outputs found

    Innate immunity and neuroinflammation

    Get PDF
    Copyright © 2013 Abhishek Shastri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration

    Multi-wavelength Observations of the Giant X-ray Flare Galaxy NGC 5905: signatures of tidal disruption

    Full text link
    NGC 5905 is one of the few galaxies with no prior evidence for an AGN in which an X-ray flare, due to the tidal disruption of a star by the massive black hole in the center of the galaxy, was detected by the RASS in 1990-91. Here we present analysis of late-time follow-up observations of NGC 5905 using Chandra, Spitzer VLA 3 GHz and 8 GHz archival data and GMRT 1.28 GHz radio observations. The X-ray image shows no compact source that could be associated with an AGN. Instead, the emission is extended -- likely due to nuclear star formation and the total measured X-ray luminosity is comparable to the X-ray luminosity determined from the 2002 Chandra observations. Diffuse X-ray emission was detected close to the circum-nuclear star forming ring. The Spitzer 2006 mid-infrared spectrum also shows strong evidence of nuclear star formation but no clear AGN signatures. The semi-analytical models of Tommasin et. al. 2010 together with the measured [OIV]/[NeII] line ratio suggest that at most only 5.6% of the total IR Flux at 19 μ\mum is being contributed by the AGN. The GMRT 1.28 GHz observations reveal a nuclear source. In the much higher resolution VLA 3 GHz map, the emission has a double lobed structure of size 2.7'' due to the circumnuclear star forming ring. The GMRT 1.28 GHz peak emission coincides with the center of the circumnuclear ring. We did not detect any emission in the VLA 8 GHz (1996) archival data. The 3 σ\sigma upper limits for the radio afterglow of the TDE at 1.28 GHz, 3 GHz and 8 GHz are 0.17 mJy, 0.09 mJy and 0.09 mJy, respectively. Our studies thus show that (i) NGC 5905 has a declining X-ray flux consistent with a TDE, (ii) the IR flux is dominated by nuclear star formation, (iii) the nuclear radio emission observed from the galaxy is due to circumnuclear star formation, (iv) no compact radio emission associated with a radio afterglow from the TDE is detected.Comment: 12 pages, 8 figures, accepted to be published in Astrophysics and Space Scienc

    SIMPEL: Circuit model for photonic spike processing laser neurons

    Get PDF
    We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber---a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different laser neuron types found in literature. The development of this model parallels the Hodgkin--Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.Comment: 16 pages, 7 figure

    Silicon saw-tooth refractive lens for high-energy X-rays made using a diamond saw

    Get PDF
    A Si saw-tooth refractive lens, fabricated by a dicing process, is demonstrated to focus a 115 keV X-ray beam

    Dietary alterations modulate the microRNA 29/30 and IGF-1/AKT signaling axis in breast Cancer liver metastasis.

    Get PDF
    Background: Metastatic cancer is incurable and understanding the molecular underpinnings is crucial to improving survival for our patients. The IGF-1/Akt signaling pathway is often impaired in cancer leading to its progression and metastases. Diet modification is known to alter the IGF-1/Akt pathway and affect the expression of microRNA involved in tumor initiation, growth and metastases. Liver metastases are one of the most common type of metastases in breast and colon cancer. In the present study, we looked at the effect of diet modification on the expression of microRNA in normal liver and liver with breast cancer metastases using in vivo model. Methodology: 6-month-old C57BL/6 J mice were put on either an ad libitum (AL) diet, or 40% calorie restricted (CR) diet or were fasted for 24 h (FA) before sacrifice. MicroRNA array analysis, western blot and qRT-PCR were performed using liver tissue to compare the treatment groups. A breast cancer model was also used to study the changes in microRNA expression in liver of a group of BALB/c mice orthotopically injected with 4 T1 cells in the mammary fat pad, put on either an AL or 30% CR diet. Liver and primary tumor tissues were used to perform qRT-PCR to compare the treatment groups. Results: MicroRNA array analysis showed significant changes in miRNA expression in both CR and FA conditions in normal liver. Expression of miR-29 and miR-30 family members was increased in both CR and FA. Western blot analysis of the normal liver tissue showed that CR and FA downregulated the IGF-1/Akt pathway and qRT-PCR showed that the expression of miR-29b, miR-29c, miR-30a and miR-30b were increased with CR and FA. Liver tissue collected from mice in the breast cancer model showed an increase in expression of miR-29b, miR-29c and miR-30b while tumor tissue showed increased expression of miR-29c, miR-30a and miR-30b. Discussion: Members of the miR-29 family are known to target and suppress IGF-1, while members of the miR-30 family are known to target and suppress both IGF-1 and IGF-1R. In the present study, we observe that calorie restriction increased the expression of miR-29 and miR-30 in both the normal liver as well as the liver with breast cancer metastases. These findings suggest that dietary alterations may play a role in the treatment of liver metastasis, which should be evaluated further

    Dynamical laser spike processing

    Get PDF
    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate that graphene-coupled laser systems offer a unified low-level spike optical processing paradigm that goes well beyond previously studied laser dynamics. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation---fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system, but the addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms.Comment: 13 pages, 7 figure
    corecore