443 research outputs found
Quantum phase transitions in two-dimensional electron systems
This is a chapter for the book "Understanding Quantum Phase Transitions"
edited by Lincoln D. Carr (Taylor & Francis, Boca Raton, 2010)Comment: Final versio
Thermodynamic magnetization of a strongly correlated two-dimensional electron system
We measure thermodynamic magnetization of a low-disordered, strongly
correlated two-dimensional electron system in silicon. Pauli spin
susceptibility is observed to grow critically at low electron densities -
behavior that is characteristic of the existence of a phase transition. A new,
parameter-free method is used to directly determine the spectrum
characteristics (Lande g-factor and the cyclotron mass) when the Fermi level
lies outside the spectral gaps and the inter-level interactions between
quasiparticles are avoided. It turns out that, unlike in the Stoner scenario,
the critical growth of the spin susceptibility originates from the dramatic
enhancement of the effective mass, while the enhancement of the g-factor is
weak and practically independent of the electron density.Comment: As publishe
Comment on "Interaction Effects in Conductivity of Si Inversion Layers at Intermediate Temperatures"
We show that the comparison between theory and experiment, performed by
Pudalov et al. in PRL 91, 126403 (2003), is not valid.Comment: comment on PRL 91, 126403 (2003) by Pudalov et a
Sharp increase of the effective mass near the critical density in a metallic 2D electron system
We find that at intermediate temperatures, the metallic temperature
dependence of the conductivity \sigma(T) of 2D electrons in silicon is
described well by a recent interaction-based theory of Zala et al. (Phys. Rev.
B 64, 214204 (2001)). The tendency of the slope d\sigma/dT to diverge near the
critical electron density is in agreement with the previously suggested
ferromagnetic instability in this electron system. Unexpectedly, it is found to
originate from the sharp enhancement of the effective mass, while the effective
Lande g factor remains nearly constant and close to its value in bulk silicon
On the cellular autoimmune mechanism for eliminating erythrocytes normally and under extreme influences
The presence of an autoimmune cellular mechanism for destroying erythrocytes on the basis of results of experiments in vivo is demonstrated in the blood and the organs. This mechanism is made up of a population of immunocompetent killer-lymphocytes which originates in the bone marrow and the thymus, and which is manifested in the local hemolysis effect
- …