103 research outputs found

    On the low dimensional dynamics of structured random networks

    Get PDF
    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015)], we study the relationship between the network connectivity structure and its low dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and post-synaptic neurons through a sufficiently smooth function gg of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of gg. Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.Comment: 16 pages, 4 figure

    Chaos in heterogeneous neural networks: II. Multiple activity modes

    Get PDF
    We study the activity of a recurrent neural network consisting of multiple cell groups through the structure of its correlations by showing how the rules that govern the strengths of connections between the different cell groups shape the average autocorrelation found in each group. We derive an analytical expression for the number of independent autocorrelation modes the network can concurrently sustain. Each mode corresponds to a non-zero component of the network’s autocorrelation, when it is projected on a specific set of basis vectors. In a companion abstract we derive a formula for the first mode, and hence the entire network, to become active. When the network is just above the critical point where it becomes active all groups of cells have the same autocorrelation function up to a constant multiplicative factor. We derive here a formula for this multiplicative factor which is in fact the ratio of the average firing rate of each group. As the effective synaptic gain grows a second activity mode appears, the autocorrelation functions of each group have different shapes, and the network becomes doubly chaotic. We generalize this result to understand how many modes of activity can be found in a heterogeneous network based on its connectivity structure. Finally, we use our theory to understand the dynamics of a clustered network where cells from the same group are strongly connected compared to cells from different groups. We show how this structure can lead to a one or more activity modes and interesting switching effects in the identity of the dominant cluster

    Hyperbolic odorant mixtures as a basis for more efficient signaling between flowering plants and bees

    Full text link
    Animals use odors in many natural contexts, for example, for finding mates or food, or signaling danger. Most analyses of natural odors search for either the most meaningful components of a natural odor mixture, or they use linear metrics to analyze the mixture compositions. However, we have recently shown that the physical space for complex mixtures is ‘hyperbolic’, meaning that there are certain combinations of variables that have a disproportionately large impact on perception and that these variables have specific interpretations in terms of metabolic processes taking place inside the flower and fruit that produce the odors. Here we show that the statistics of odorants and odorant mixtures produced by inflorescences (Brassica rapa) are also better described with a hyperbolic rather than a linear metric, and that combinations of odorants in the hyperbolic space are better predictors of the nectar and pollen resources sought by bee pollinators than the standard Euclidian combinations. We also show that honey bee and bumble bee antennae can detect most components of the B. rapa odor space that we tested, and the strength of responses correlates with positions of odorants in the hyperbolic space. In sum, a hyperbolic representation can be used to guide investigation of how information is represented at different levels of processing in the CNS

    Editorial: Advances in Computational Neuroscience

    Get PDF
    © 2022 Nowotny, van Albada, Fellous, Haas, Jolivet, Metzner and Sharpee. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/Peer reviewedFinal Published versio
    • …
    corecore