6,251 research outputs found
Mass dependence of the hairpin vertex in quenched QCD
The pseudoscalar ``hairpin'' vertex (i.e. quark-disconnected vertex) plays a
key role in quenched chiral perturbation theory. Direct calculations using
lattice simulations find that it has a significant dependence on quark mass. I
show that this mass dependence can be used to determine the quenched
Gasser-Leutwyler constant L5. This complements the calculation of L5 using the
mass dependence of the axial decay constant of the pion. In an appendix, I
discuss power counting for quenched chiral perturbation theory and describe the
particular scheme used in this paper.Comment: 12 pages, 4 figures. Version to appear in Phys. Rev. D. Central
result unchanged, but explanation of calculation improved and minor errors
corrected. New appendix discusses power counting schemes in quenched chiral
perturbation theor
Quantization of Fayet-Iliopoulos Parameters in Supergravity
In this short note we discuss quantization of the Fayet-Iliopoulos parameter
in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos
parameter determines a lift of the group action to a line bundle, and such
lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted
in terms of moment maps and symplectic reductions, we argue that in
supergravity the quantization of the Fayet-Iliopoulos parameter has a natural
understanding in terms of linearizations in geometric invariant theory (GIT)
quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe
Some symmetry classifications of hyperbolic vector evolution equations
Motivated by recent work on integrable flows of curves and 1+1 dimensional
sigma models, several O(N)-invariant classes of hyperbolic equations for an -component vector are considered. In each
class we find all scaling-homogeneous equations admitting a higher symmetry of
least possible scaling weight. Sigma model interpretations of these equations
are presented.Comment: Revision of published version, incorporating errata on geometric
aspects of the sigma model interpretations in the case of homogeneous space
Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis number
A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers
Thermodynamics of lattice QCD with 3 flavours of colour-sextet quarks
We have been studying QCD with 2 flavours of colour-sextet quarks to
distinguish whether it is QCD-like or conformal. For comparison we are now
studying QCD with 3 flavours of colour-sextet quarks, which is believed to be
conformal in the chiral limit. Here we present the results of simulations of
lattice QCD with 3 colour-sextet quarks at finite temperatures on lattices of
temporal extent and 6, with masses small enough to yield access to the
chiral limit. As for the 2-flavour case, we find well-separated deconfinement
and chiral-symmetry restoration transitions, both of which move to appreciably
weaker couplings as is increased from 4 to 6. If this theory is
conformal, we would expect there to be a bulk chiral transition at a fixed
coupling. For this reason we conclude that for and 6, the chiral and
hence the deconfinement transitions are in the strong-coupling domain where the
theory is essentially quenched. The similarity between the behaviours of the 2
and 3 flavour theories suggested that the and 6 transitions for the
2-flavour theory also lie in the strong-coupling domain. The phase structure of
both theories is very similar.Comment: 17 pages Latex(Revtex), 7 postscript figure
High Precision determination of the pi, K, D and D_s decay constants from lattice QCD
We determine and decay constants from lattice QCD with 2% errors, 4
times better than experiment and previous theory: = 241(3) MeV,
= 207(4) MeV and = 1.164(11).
We also obtain = 1.189(7) and =
0.979(11). Combining with experiment gives =0.2262(14) and
of 4.43(41). We use a highly improved quark discretization on
MILC gluon fields that include realistic sea quarks fixing the and
masses from the , , and meson masses. This allows a stringent
test against experiment for and masses for the first time (to within
7 MeV).Comment: 4 pages, 2 figures. Published version - changes from original include
a more extensive discussion of errors and an error budget table covering more
quantities. There are very small changes in some of the values reporte
Multiscaled Cross-Correlation Dynamics in Financial Time-Series
The cross correlation matrix between equities comprises multiple interactions
between traders with varying strategies and time horizons. In this paper, we
use the Maximum Overlap Discrete Wavelet Transform to calculate correlation
matrices over different timescales and then explore the eigenvalue spectrum
over sliding time windows. The dynamics of the eigenvalue spectrum at different
times and scales provides insight into the interactions between the numerous
constituents involved.
Eigenvalue dynamics are examined for both medium and high-frequency equity
returns, with the associated correlation structure shown to be dependent on
both time and scale. Additionally, the Epps effect is established using this
multivariate method and analyzed at longer scales than previously studied. A
partition of the eigenvalue time-series demonstrates, at very short scales, the
emergence of negative returns when the largest eigenvalue is greatest. Finally,
a portfolio optimization shows the importance of timescale information in the
context of risk management
Setting priorities to inform assessment of care homes’ readiness to participate in healthcare innovation: a systematic mapping review and consensus process
© 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedOrganisational context is known to impact on the successful implementation of healthcare initiatives in care homes. We undertook a systematic mapping review to examine whether researchers have considered organisational context when planning, conducting, and reporting the implementation of healthcare innovations in care homes. Review data were mapped against the Alberta Context Tool, which was designed to assess organizational context in care homes. The review included 56 papers. No studies involved a systematic assessment of organisational context prior to implementation, but many provided post hoc explanations of how organisational context affected the success or otherwise of the innovation. Factors identified to explain a lack of success included poor senior staff engagement, non-alignment with care home culture, limited staff capacity to engage, and low levels of participation from health professionals such as general practitioners (GPs). Thirty-five stakeholders participated in workshops to discuss findings and develop questions for assessing care home readiness to participate in innovations. Ten questions were developed to initiate conversations between innovators and care home staff to support research and implementation. This framework can help researchers initiate discussions about health-related innovation. This will begin to address the gap between implementation theory and practice.Peer reviewe
Kaon B parameter from quenched Lattice QCD
We present results of a large-scale simulation for the Kaon B parameter
in quenched lattice QCD with the Kogut-Susskind quark action. Calculating
at 1% statistical accuracy for seven values of lattice spacing in the range
fm on lattices up to , we verify a
quadratic dependence of theoretically predicted. Strong indications
are found that, with our level of accuracy, terms
arising from our one-loop matching procedure have to be included in the
continuum extrapolation. We present (NDR, 2 GeV)=0.628(42) as our final
value, as obtained by a fit including the term.Comment: 8 pages, Latex(revtex, epsf), 2 epsf figure
- …