50 research outputs found

    Working Together: Integrating Computational Modeling Approaches to Investigate Complex Phenomena

    Get PDF
    Complex systems are made up of many entities, whose interactions emerge into distinct collective patterns. Computational modeling platforms can provide a powerful means to investigate emergent phenomena in complex systems. Some research has been carried out in recent years about promoting students' modeling practices, specifically using technologically advanced tools and approaches that allow students to create, manipulate, and test computational models. However, not much research had been carried out on the integration of several modeling approaches when investigating complex phenomena. In this paper, we describe the design principles used to develop a middle school unit about ants' collective behavior that integrates three modeling approaches: conceptual drawn models, agent-based models, and system dynamics models. We provide results from an initial implementation of an 8th grade curricular unit, indicating that students engaged with several aspects of the modeling practice. Students' conceptual knowledge about ant pheromone communication increased following learning the unit. We also found gains in students' metamodeling knowledge about models as tools for investigating phenomena. We discuss the affordances and challenges of engaging students with several modeling approaches in science classroom

    Phosphoinositide 3-Kinase Binds to TRPV1 and Mediates NGF-stimulated TRPV1 Trafficking to the Plasma Membrane

    Get PDF
    Sensitization of the pain-transducing ion channel TRPV1 underlies thermal hyperalgesia by proalgesic agents such as nerve growth factor (NGF). The currently accepted model is that the NGF-mediated increase in TRPV1 function during hyperalgesia utilizes activation of phospholipase C (PLC) to cleave PIP2, proposed to tonically inhibit TRPV1. In this study, we tested the PLC model and found two lines of evidence that directly challenge its validity: (1) polylysine, a cationic phosphoinositide sequestering agent, inhibited TRPV1 instead of potentiating it, and (2) direct application of PIP2 to inside-out excised patches dramatically potentiated TRPV1. Furthermore, we show four types of experiments indicating that PI3K is physically and functionally coupled to TRPV1: (1) the p85β subunit of PI3K interacted with the N-terminal region of TRPV1 in yeast 2-hybrid experiments, (2) PI3K-p85β coimmunoprecipitated with TRPV1 from both HEK293 cells and dorsal root ganglia (DRG) neurons, (3) TRPV1 interacted with recombinant PI3K-p85 in vitro, and (4) wortmannin, a specific inhibitor of PI3K, completely abolished NGF-mediated sensitization in acutely dissociated DRG neurons. Finally, simultaneous electrophysiological and total internal reflection fluorescence (TIRF) microscopy recordings demonstrate that NGF increased the number of channels in the plasma membrane. We propose a new model for NGF-mediated hyperalgesia in which physical coupling of TRPV1 and PI3K in a signal transduction complex facilitates trafficking of TRPV1 to the plasma membrane

    Learning an Alternative Car-Following Technique to Avoid Congestion with an Instructional Driving Simulator

    Get PDF
    This paper addresses the problem of traffic congestion through a learning perspective, highlighting the capabilities of Information and Communication Technologies to transform society. Recent physical and mathematical analysis of congestion reveals that training drivers to keep a safe distance systematically contributes to the emergence and maintenance of interference congestion (so-called phantom traffic jam). This paper presents the WaveDriving Course (WDC), a simulated learning environment designed to help drivers progress from the traditional Drive-to-keep-Distance (DD) technique to a new car-following (CF) principle better suited for wave-like traffic, Drive-to-keep-Inertia (DI). The WDC is based on the ordinary knowledge of the driver (e.g., going through a series of traffic lights), and presents this situation in terms of two possible simultaneous behavioral strategies. The driver has the opportunity to verify that it is possible to achieve the same objective with different consequences. Finally, the WDC checks to what extent this learning generates transfer patterns in the analogous case of CF. The paper focuses on results concerning the first WDC module: the traffic-light analogy. Forty-two participants followed the whole learning procedure for about 30 min. An evaluative CF test was administered before and after visioning the tutorial and practicing on the simulator. Overall, transference from this traffic-light analog to the CF situation (posttest) was successful. Results confirm the adoption of the expected DI strategies (speed variability decreased, distance and distance variability to leader increased, fuel consumption decreased, platoon elongation decreased etc.). The need to improve the WDC teaching of the appropriate CF distance is discussed

    An evaluation of serological methods to diagnose tick-borne encephalitis from serum and cerebrospinal fluid

    Get PDF
    Background: Tick-borne encephalitis (TBE) is an infectious disease endemic to large parts of Europe and Asia. Diagnosing TBE often relies on the detection of TBEV-specific antibodies in serum and cerebrospinal fluid (CSF) as viral genome is mostly not detectable once neurological symptoms occur. Objectives: We evaluated the performance of TBEV IgM and IgG ELISAs in both serum and CSF of confirmed TBEV patients and discuss the role of (CSF) serology in TBEV diagnostics. Study design: For the assay evaluation we collected specimen from confirmed TBEV patients. Assay specificity was assessed using sera from patients with a related flavivirus infection or other acute infection. A selected ELISA assay was used to analyze TBEV-specific antibodies in CSF and to evaluate the use in confirming TBE diagnosis. Results: In this study the overall sensitivity of the IgM TBEV ELISAs was acceptable (94 -100 %). Four out of five IgM ELISA's demonstrated an excellent overall specificity from 94 -100% whereas a low overall specificity was observed for the IgG TBEV ELISAs (30-71%). Intrathecal antibody production against TBEV was demonstrated in a subset of TBE patients. Conclusions: In four out of five ELISAs, IgM testing in serum and CSF of TBE patients is specific and confirmative. The lack of IgG specificity in all ELISAs emphasizes the need of confirmatory testing by virus neutralisation, depending on the patient's background and the geographic location of exposure to TBEV. A CSF-serum IgG antibody index can support the diagnosis specifically in chronic disease or once IgM has disappeared
    corecore