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Abstract—This paper addresses the problem of traffic 
congestion through a learning perspective, highlighting the 
capabilities of Information and Communication Technologies to 
transform society. Recent physical and mathematical analysis of 
congestion reveals that training drivers to keep a safe distance 
systematically contributes to the emergence and maintenance of 
interference congestion (so-called phantom traffic jam). This 
paper presents the WaveDriving Course (WDC), a simulated 
learning environment designed to help drivers progress from the 
traditional Drive-to-keep-Distance (DD) technique to a new car-
following (CF) principle better suited for wave-like traffic, Drive-
to-keep-Inertia (DI). The WDC is based on the ordinary 
knowledge of the driver (e.g., going through a series of traffic 
lights), and presents this situation in terms of two possible 
simultaneous behavioral strategies. The driver has the 
opportunity to verify that it is possible to achieve the same 
objective with different consequences. Finally, the WDC checks to 
what extent this learning generates transfer patterns in the 
analogous case of CF. The paper focuses on results concerning the 
first WDC module: the traffic-light analogy. Forty-two 
participants followed the whole learning procedure for about 30 
min. An evaluative CF test was administered before and after 
visioning the tutorial and practicing on the simulator. Overall, 
transference from this traffic-light analog to the CF situation 
(posttest) was successful. Results confirm the adoption of the 
expected DI strategies (speed variability decreased, distance and 
distance variability to leader increased, fuel consumption 
decreased, platoon elongation decreased etc.). The need to improve 
the WDC teaching of the appropriate CF distance is discussed. 
 

Index Terms—Devices for learning, educational simulation, 
self-assessment technologies, traffic congestion.  

I. INTRODUCTION 
Y 2050, two thirds of the world’s population is 
expected to live in cities [1]. One outcome of the 
intensification of this urban resettlement trend is traffic 

congestion. The literature points to the economic costs of traffic 
congestion such as increased prices of goods, time spent 
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travelling and unemployment [2], [3], and health issues, as 
traffic pollution causes more deaths than car crashes in some 
countries [4]. Internationally, road-safety education is 
incorporated into schools from K-12, including topics such as 
pedestrian safety or driver education. In Spain, road-user 
education and training are compulsory as a horizontal topic in 
primary school education, targeting promotion of road 
education and respectful attitudes that help prevent traffic 
accidents [5]. Road-safety education in secondary school is 
merged with other subjects, with the aim of helping students 
understand their rights and duties as road users [6]. In Israel, 
learning road safety is compulsory in K-12 [7]. In secondary 
schools, three main topics are addressed: driving education, 
vehicle operation and traffic code and laws. A more recent 
official outline recommended that learning about driving in 
traffic should be organized as active learning, inquiry- and 
problem-based learning, identifying misconceptions and 
addressing them, event analysis, role-playing and simulations 
and a wide use of technologies and multimedia [8]. The present 
study is set within the scope of these educational national 
standards, exploring the design and active problem-based 
learning with interactive simulations, geared toward teaching 
safe driving and co-existing in greater harmony with fellow 
drivers. The main objective of this work focuses on the last step 
of driver education: the driver in training and the adult driver 
(from 16 to 18 years old and over) who access a training process 
through the usual formal channels (for example, a driving 
school) to learn, or improve, driving a car. 

This paper proposes a way to learn to drive adaptively in 
congested traffic by using simulations and models. Model-
based learning, used mainly in STEM (science, technology, 
engineering and mathematics) related domains, focuses on 
developing and using models of various systems [9]. A model 
is a representation, a simplified version of reality, of a system 
or phenomenon that supports explaining and predicting the 
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system’s behavior [10]. Model-based learning can be enacted 
in various ways, for example by having students construct or 
use prepared models, as in the present study [11]. According to 
Kerner [12], “Congested traffic is defined as a state of traffic in 
which the average speed is lower than the minimum average 
speed that is still possible in free flow” (p. 13). Under this 
definition, different situations such as road cuts, floods, 
accidents or traffic lights may all cause congestion. These 
situations can be grouped into two: traffic jams due to lane 
blocking, and speed interference jams, also known as phantom 
traffic jams [13], a type of traffic congestion that pervasively 
emerges in traffic for no apparent reason, and is the focus of this 
research. This second type arises because it is mathematically 
impossible to drive while trying to maintain the safety distance 
and that there are no traffic jams due to the backward 
fluctuations resulting from the increasing delays produced by 
drivers’ reaction times. Presently, driving courses teach 
students about individual safety measures, such as keeping a 
certain distance from the car they are following. However, what 
they do not teach is how interactions between cars lead to 
congestion, and what behaviors may promote smoother and 
faster driving in such situations. The present learning design 
focuses on the latter, raising awareness of how driving actions 
taken for granted (e.g., keeping a distance from the car ahead) 
concern individual safety but also are a systemic issue 
facilitating traffic jams. 

 

A. The Solution: Rethinking Car-Following 
The simulation design is based on recent developments 

concerning car-following (CF) models in the field of traffic 
engineering research and theory [14]. In the last 10 years, 
knowledge about the formation of traffic congestion has 
changed substantially. A central element of this new 
perspective is a shift from pairs of cars (leader, follower) to 
broader systemic interactions (e.g., internal dynamics of cars 
that platoon, or group closely). Controlled experiments 
exploring these phenomena under the so-called Nagoya 
paradigm [15], [16] replicated the formation of traffic jams 
even when there is no external impediment such as an accident. 
Drivers followed each other in a 230-m perimeter circle under 
the premise follow the vehicle ahead in safety and try to 
maintain cruising velocity. Participants drove and maintained 
free flow. But when the number of drivers rose to 22, backward 
fluctuations broke the free flow, and several vehicles stopped 
momentarily to avoid crashing. At a given point, even a single 
car’s braking was transmitted back through the column of cars, 
forming the typical shockwave that eventually brought some 
cars to a complete halt. Put simply, the adoption of the standard 
safety distance was the ultimate cause of the occurrence of 
phantom traffic jams, because safety distance arranges car 
platoons to favor the spread of disturbances in a waveform. This 
CF strategy only works well when the speed of the car ahead is 
constant, a scenario more often the exception than the rule in 
road traffic [17], [18]. 

Most CF models assume that drivers’ systematic adoption of 
a safety distance is natural or rational [19], [20]. Millions of 

observations worldwide confirm this CF behavior: the 
systematic approach of following the leader (coupling). 
However, no psychological theory presumes a genetic or 
biological endowment ready for the massively observed CF 
behavior. Some living organisms (ants, bees, caterpillars and 
the like) exhibit complex behaviors derived from such genetic 
or biological endowments, but not humans. Another reason to 
keep the safety distance as a natural disposition is mathematical 
modelling based on cinematics. However, if the Nagoya 
perspective is correct, there should be a shift from complex 
differential equations to wave mathematics. Recent 
perspectives on the Traffic Flow Theory increasingly focus on 
waves as a heuristic to model and describe traffic flows from a 
macro perspective [21]. 

B. The Challenge: Changing Driving Behavior 
Transforming traffic flows and eliminate traffic jams 

requires adopting a different perspective. Current CF strategies 
adopted by each driver promote traffic jams. However, nothing 
prevents drivers from adopting a different CF strategy from the 
one massively observed. To understand these issues, a fruitful 
model to consider is that each car produces a disturbance, which 
results in a wave oscillation in space. Interaction between the 
waves can be understood through classical wave mathematics 
and physics [22]. Based on this approach, two main options 
emerge for a collection of cars when one car creates a 
disturbance — such as moving slightly slower or faster than the 
others. The first is constructive interference that increases the 
oscillation, causing the disturbance to magnify (i.e., summing 
waves). The second is destructive interference, whereby the 
waves cancel each other out and reduce the disturbance (i.e., 
offsetting waves [23]. 

Commonly, drivers worldwide are instructed to keep a safe 
distance, or Drive-to-keep-Distance (DD), from cars ahead. 
When a driver keeps a safety distance following a leader 
moving at a uniform speed, with free-flow conditions, 
disturbances are not transmitted. But in other traffic contexts 
(e.g., entering or leaving conurbations at peak hour), traffic 
flows become dense (i.e., a perfect means of wave 
transmission). The leader’s oscillations then become regular, 
and the Drive-to-keep-Distance (DD) principle only increases 
that perturbation (by simple sum or reaction times), eventually 
producing traffic jams due to constructive interference of waves 
(or a sum of waves). The alternative is for drivers to learn to 
create a destructive interference, offsetting the leader’s 
oscillations, and preserving inertia, or Drive-to-keep-Inertia 
(DI) [24], [25]. To offset traffic waves, drivers must calculate 
not only the safety distance but also the leader’s average speed 
amidst stop-and-go cycles to keep a uniform CF speed, that is, 
to apply the so-called Drive-to-keep-Inertia (DI) principle. 
Some studies indicate that drivers can not only DD but also DI, 
as requested [24], [26], [25]. In sum, drivers are capable of both 
increasing and offsetting the leader’s oscillations. Based on this 
developing knowledge, transforming traffic flows, eliminating 
traffic jams and achieving uninterrupted traffic flows is 
possible. However, we need to broaden drivers’ knowledge and 
perspectives of CF under dense traffic. Previous studies showed 
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that drivers can follow a leader with oscillating speed and keep 
their speed relatively constant upon request. While they can 
adopt these energy conservation behaviors, they do it blindly; 
that is, they adopt that behavior if the experimenter requires it, 
but they know nothing about its implications for the broader 
traffic context. In line with recent theoretical developments as 
the Goals and Driver Education Framework [27, 28, 29, 30] this 
broader insight requires the teaching-learning of DI as strategic 
procedural learning, helping individual drivers to understand 
how their driving behaviors impact traffic flow, the genesis of 
phantom traffic jams and what kinds of driving behaviors could 
help avoid them. Although amenable to a high degree of 
automation, the DI technique must be consciously applied 
depending on driving conditions to anticipate and avoid the 
potential risks involved in traffic situations, as well as to drive 
more efficiently. Based on previous studies [24], [25], we have 
termed this adaptive, anti-jam driving technique WaveDriving 
[31]. 

II. THE WAY FORWARD: DESIGNING A SUITABLE LEARNING 
ENVIRONMENT 

The WaveDriving Course (WDC) is a multimedia learning 
platform aimed at providing drivers experiences that could 
transform their CF knowledge and behavior [24], [25]. 
Considering classical approaches to memory and cognition 
such as the Multicomponent Working Memory Model [32], 
[33], we would broadly expect learners to attend to some visual 
and verbal stimuli, retaining them in their working memory 
system, then integrating them with information from their long-
term memory [34]. At a higher level, theories for instructional 
message design [35], [36] draw on these assumptions to identify 
adequate multimedia principles to improve learning. Table 1 
presents some examples of the WDC as a learning environment 
in terms of the 4C/ID Model [37]. 

TABLE I 
THE FOUR COMPONENTS OF INSTRUCTIONAL DESIGN 

MODEL [33] AND LEVELS 0/1 OF THE WDC 
 4C/ID description Level 0 Level 1 

C1 Construction of new 
schemes: induction of 
experiences 
(generalisation and 
discrimination of 
cognitive schemes) 

Learning to 
accelerate and 
decelerate with 
keyboard 

Learning to catch 
traffic lights in 
green while 
adopting a 
constant speed  

C2 Elaboration of schemes: 
integrating new 
information with pre-
existing schemes  

Arrow-up on 
the keyboard 
same function 
as press on the 
gas pedal to 
accelerate; 
Arrow-down 
same as release 
pedal / press 
brake pedal to 
decelerate 

Schemes 
concerning pace 
regulation (e.g., 
passing through a 
moving revolving 
door without 
pushing it) 

C3 Automation of schemes 
(I): compilation of 
knowledge that matches 
conditions and actions 

Learner gets 
used to pressing 
arrow-up on the 
keyboard to 
accelerate and 

Learner attends to 
certain cues (e.g., 
traffic-light timers; 
the red cars’ 
approaching 

arrow-down to 
decelerate; If 
releasing the 
key, the same 
speed is 
maintained 

speeds) as 
feedback to fine-
tune their speed 

C4 Automation of schemes 
(II): repetition and 
strengthening of 
schemes that are applied 
specifically and quickly 

After some 
practice, 
managing speed 
on the keyboard 
is assumed as a 
secondary task 
required to 
adapt higher 
driving goals 

The learner gets 
used to reading 
feedback 
indicators swiftly 
and to reaching the 
correct passing 
speed effortlessly 

C = Component 
 
 

Computer simulations designed for learning driving 
normally focus on experiences that promote elementary driving 
knowledge such as accelerating, decelerating or steering: that 
is, the main actions and reactions of a novel driver in a driving 
environment [38], [39]. Simulation environments are also 
effective in showing new or unusual traffic environments or 
circumstances, and in learning and training new driving 
behaviors [40], [41], [42], [43]. One learning environment that 
attends to driving in emergent traffic and congestion is 
TrafficJams [44], in which a group of people drive their cars 
together on a single simulated road. Unlike the WDC, this 
learning environment attends not specifically to the DD and DI 
CF strategies but to other issues of keeping a safe distance (with 
a specific strategy), braking and accelerating and shifting 
between lanes. The focus here is on the collective behavior, and 
individual behaviors are less distinct and life-like than in the 
WDC. The WDC targets two main purposes. The first is to 
teach an alternative CF technique, WaveDriving, which focuses 
not only on keeping the safety distance (DD) but also on 
preserving inertia when following an oscillating leader (DI). 
Accordingly, during the activity, drivers in the WDC are 
encouraged to compare the differing effects of adopting DD 
versus DI through different tasks and scenarios. The second 
main purpose of the WDC is to help drivers understand the 
close connection between adopting DD (normative CF 
technique) or DI (the alternative CF technique) and the 
emergence of congestion in a platoon of followers. To achieve 
these goals, some ordinary elements and circumstances (e.g., 
rearview mirror, presence of traffic lights, passing road sections 
with different speed limits) have been implemented in the 
WDC, as well as some very unusual or impossible ones (e.g., 
adopting bird’s-eye views from different angles and positions 
over the whole platoon at will, displaying traffic lights on each 
single car, connecting cars with springs, activating radar-like 
displays). Like other recent attempts to model and understand 
complex systems [44], the WDC leverages uncommon paths or 
perspectives to frame participants’ analysis and comprehension 
of CF at large. 

The WDC aims to explain that traffic congestion depends on 
how we face and manage certain flow disturbances. 
Understanding this wave-like character can help drivers adjust 
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their driving behaviors appropriately. To adapt to the local 
changes in traffic and understand their broad consequences 
(what will happen ahead, what will happen behind), drivers 
need to evaluate and integrate multiple perspectives. This 
complexity requires learning processes and practice. The 
circumstances of transfer are vital to understanding why some 
driving behaviors (or driving tasks) will transfer properly and 
others will not [38]: transfer will occur most easily if the 
behavior is at least once well practiced; when the initiation of 
the skill is prompted externally, the context will help the driver 
initiate this alternative behavior. 

 

A. The Vision: Mirroring the Driving School 
The WDC is analogous to a driving school. Both combine 

theoretical and practical lessons, involve increasingly 
demanding driving situations and evaluate performance 
continuously, providing the learner feedback. However, the 
WDC has been conceived to work online, making it available 
to thousands of drivers, enriching their driving knowledge and 
potential feedback (e.g., a WaveDriving certificate). This 
approach involves certain design, structure and time 
constraints. Fig. 1 presents the WDC structure: lectures, 
practice and evaluation. Fig. 2 presents the learning modules: 
Lessons 0-3 specific driving achievements.  
 

 
 Fig. 1. The WDC structure. 
 

Fig. 2. The WDC modules. 
 

B. The WDC Structure: Information and Guide, Practice and 
Evaluation 

The WDC transcends the standard driving experience. Left to 
their dispositions and knowledge, participants would have to 
resort to basic trial-and-error or random search heuristics to 
explore and understand how the WDC operates [36]. This 
would require time and perseverance. Therefore, the WDC’s 
driving demands have been purposely simplified (no 
overtaking, lane changing or merging), focusing on the main 
issue: the effects of CF manipulations on the line of vehicles. 
Designed as an online tool, the WDC also tries to optimize the 
learning experience, working under certain time constraints 
(each tutorial-then-practice block on the simulator takes 
roughly 5 min). Tutorials (the driving school teacher) assume 
modelling [45] and play a fundamental guiding role, proposing 
specific goals to practice, encouraging attention to the effects 
of different manoeuvers, and synthesizing the novice-to-expert 
knowledge paths, highlighting the cause-consequence pairs that 
help one discern what is important to do and what conclusions 
can be drawn from the experiences. Each WDC tutorial 
assumes a few main goals that are then divided into more 
specific sub-goals, achieved by timed exposure to certain visual 
and verbal stimuli (Appendix I). WDC tutorials adopt the basic 
design principles of multimedia documents [36], following the 
Cognitive Theory of Multimedia Learning in particular [35], 
[46]. 

The WDC simulator always presents the same visual and 
operative resources available onscreen. When the driver clicks 
to enter a particular level, the main two or three objectives of 
the session (already mentioned in the corresponding tutorial) 
are displayed again. Once the participant is ready, clicking on 
the “start” button (and waiting for a short countdown) places 
them as if driving a car on the right lane, holding the wheel, and 
assuming full control of the car (being able to accelerate, 
change visual perspective, etc.). Ordinary elements are 
displayed (wheel, cockpit, windshield screen, speedometer, 
rearview mirror). The road ahead may vary, always showing 
two lanes but presenting different objects (e.g., traffic lights, 
cars, speed limits) depending on the requirements targeted by 
each level. Cars on the right lane (participant) are always green; 
cars on the left lane (DD drivers) are always red. The 
simulator’s screen presents other specific features: nine semi-
transparent icons (to activate the traffic light, springs, radar, 
etc.) are displayed on the left, and a toggled bar (an alternative 
way to control speed besides up-and-down arrow keys) is  

 
displayed on the right. Clicking on certain screen buttons 
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presents different gadgets (e.g., a traffic light mounted over 
each car on the scene) designed to help participants understand 
the contents and goals of the particular practice session. Driving 
at Level 0, designed to learn the controls, participants follow a 
leader at a constant speed; all other levels are built by different 
scenarios involving speed variation. 

The basic structure of the evaluation is pretest and posttest. 
The evaluation scenario consists of a group of 10 cars following 
a leader that stops-and-goes cyclically. The participant drives 
the first car after the wavering leader. No additional visual help 
is available, only speed (keyboard, mouse) and the rearview 
mirror. Participants are simply presented with these 
instructions: 1. You will carry out a car-following task for two 
and a half minutes. 2. You will follow that car without visual 
aids. Once the task is finished, participants receive some 
feedback in the form of a Driver-Car-Diagram (Fig. 1, bottom 
right).  

C. The Learning Modules: Levels 0-3 
The WDC includes three modules (Fig. 2): A. Knowing the 

controls (Level 0); B. Teaching WaveDriving (Levels 1–3); and 
C. Evaluation (Level 4). The sessions on the simulator are time-
limited (around 2.5 min), and tutorials take no longer than this 
to address what the learner should practice at each level. 
Nevertheless, participants can decide how many times to watch 
the tutorials and practice the WDC. Thus, the minimum time a 
learner would need to complete the WDC is roughly 30 min. 

Module A: Knowing the controls. Tutorial 0 (Fig. 2A) informs 
about time for each practice session and anticipates two broad 
practice goals (see Appendix I, Scenes 2-3). Then, an 
explanation of the alternative ways to manage the speed follows 
(pressing arrow-up on the keyboard to accelerate or arrow-
down to decelerate; using the mouse on the scrolling bar on the 
left of the screen). Attention is then brought to the rearview 
mirror (several cars follow behind). Finally, attention is brought 
to the screen buttons that control several visual resources: (a) 
the multi-camera (four aerial positions consecutively accessed 
by repeating mouse clicks), (b) the helicopter (camera viewing 
the very last cars of the following platoon and indicating the 
very last car’s speed), (c) the radar (providing a bird’s-eye view 
of the movement of the whole group [or groups] of cars along 
the road lanes; cars can go green, yellow, or red if they 
respectively progress, slow down, or stop), (d) traffic lights 
(clicking on the icon makes traffic lights mounted on each car 
appear, red-yellow-green colors change in consonance with 
making the most of the movement phase and the traffic-light 
color, as the radar does), and (e) two types of car-connecting 
springs. The remaining screen buttons (rural/urban scene, 
day/night, full screen, exit) are mostly irrelevant (aesthetic 
functions). Once the tutorial (2.16 min) is viewed, the learner is 
invited to enter the simulator and practice (3 min), and then to 
repeat if they wish.  

Module B: Teaching WaveDriving (Levels 1–3). We now 
broadly describe Levels 1–3 (see section D for a detailed 
description of Level 1). These levels are interconnected and 
comprise the knowledge and behaviors that participants must 
integrate into their conceptual and behavioral repertoire to learn 

DI. Level 1, the traffic-light analogy, attempts to promote a 
basic understanding: adopting a uniform speed is a better 
strategy for confronting predictable stop-and-go sequences in 
traffic (here, the green-yellow-red traffic-light cycles) than 
adopting the safety-distance criteria of systematically 
approaching the legal distance limit marked by the specific 
situation (here, the red light cyclically requiring “stop”). Level 
2, the spring analogy, fosters a different yet complementary 
assumption: adopting a uniform speed facing stop-and-go 
traffic requires rethinking distance. Safety distance always must 
be preserved, nearly as a constant, but in close connection with 
a new concept: the anti-jam distance. The only way to adopt a 
uniform speed following a wavering car is to change the CF 
strategy altogether. And if Level 1 proposes uniform speed as 
correct, Level 2 presents the other side of the coin: for this 
uniform speed to be kept, it should be equal to the average speed 
of the leader, so the anti-jam distance is mobile, variable and 
must expand and retract to maintain drivers’ inertia. Level 3, 
the paradox of speed, focuses more explicitly on the effect of 
changing speeds on the whole platoon of followers. Cars on the 
left lane continuously accelerate and decelerate (due to a 
repetitive set of gantries changing speed limits, from 20 to 40 
km/h); cars on the right lane adopt a uniform speed (25 km/h). 
Even though the neat average speed is higher in the left lane, to 
accelerate and decelerate systematically is inefficient: the 
learner may observe that cars in the left lane move away first, 
whereas cars in the right lane reach them little by little. 
Congested groups emerge continuously among the followers in 
the left lane (as in the Nagoya experiment); cars follow 
smoothly behind the learner in the right lane. 

Module C: Evaluation (Level 4). The evaluation module 
adopts the same viewpoint before and after learning with the 
WDC: participants follow a leader that stops-and-goes, with no 
aids available. Five main groups of variables are measured: 
participant’s mean and standard deviation of speed while 
following the leader, participant’s mean and standard deviation 
of distance to the leader, participant’s risk coefficient (time 
dangerously spent within the safety-distance area), average and 
standard deviation of the whole platoon of followers (road 
space occupied) and participant’s fuel consumption during the 
task. The simulation calculates fuel consumption based on 
typical values for cars. It uses vehicle speed to compute fuel 
consumption at each moment. Overall fuel consumption is a 
successive summation of time intervals multiplied by the 
corresponding consumption. If the WDC is successful, 
measures should change from a DD pattern (higher speed 
dispersion, lower distance and distance dispersion, longer risk 
periods assumed, higher dispersion of platoon elongation and 
higher fuel consumption) to a DI pattern (lower speed 
dispersion, higher distance and distance dispersion, shorter or 
null risk periods, lower dispersion of platoon elongation and 
lower fuel consumption). Some other variables are of interest. 
For example, average speed should not differ significantly 
between DI and DD (an average speed lower than the leader’s, 
under DI, may indicate a poor understanding of the appropriate 
CF distance). 
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D. Level 1: The Traffic-Light Analogy 
There are four standard driving modes: accelerating, cruising, 

decelerating and idling. The transition modes (accelerate, 
decelerate) pollute more than the stable ones (cruise, idle). Low 
speeds pollute more than moderate speeds [47]. It makes no 
sense to accelerate a vehicle and reach a certain speed knowing 
that, given the traffic conditions, that speed will only force us 
to brake and stop. However, millions of drivers repeat this 
behavior many times each day. When facing dense traffic at 
peak hours and finding jammed cars ahead, drivers accelerate 
to reach safety distance, then stop, and join the cycle, 
contributing to the problem, not the solution. 

Level 1 constructs a situation where two alternative strategies 
are easy to compare: two lanes, 20 vehicles per lane, and several 
gantries ahead, holding traffic lights. The learner drives the first 
car in the right lane. All cars in the left lane are virtual DD 
robots programmed to accelerate then stop, keeping safety 
distance (never passing the traffic light in red). All cars 
following the participant in the right lane are also DD robots. 
Traffic lights display a timer. Participants are invited to see that 
a traffic light is first green, for 2 s (1, 0), only to turn yellow 
(from 4 to 0 s), and red (14 s, regressing to 0), finally displaying 
a stable green. There is no way for drivers to pass the traffic 
light in green even with hard acceleration, so what to do? What 
is a reasonable approach to that situation? Level 1 focuses on 
two goals, addressed to participants at the beginning of the 
lesson: 1. Without ever jumping a red light, find out what 
constant speed allows you to cross the traffic lights just as they 
go green. 2. Observe the situation as a whole, compare and 
think: which platoon spends and pollutes less? Participants are 
invited to click on the traffic-light button onscreen, so that a 
traffic light is displayed above each car. Then a comparison 
[48], [49] between traffic lights and leading cars is highlighted: 
traffic lights turn green (cars ahead move), then yellow (cars 
slow down), then red (cars stop). DD-bots on the left lane 
surrender to the traffic-light invitation: they just imitate the 
traffic-light cycle. Thus these cars cyclically stop-and-go, 
transmitting, in turn, these traffic-light variations to the cars that 
follow them. Participants on the right lane are invited to adopt 
an alternative strategy, guessing the speed they should adopt to 
reach the traffic lights exactly when they go green. The 
consequence: 19 DD-bot followers displaying a green traffic 
light while following the participant at a constant speed 
(Appendix II). 

III. THE STUDY 
This study complements the presentation of the WDC 

simulation and learning environment. It investigates the WDC 
impact on three variables: driving behaviors in the simulation, 
transfer of the driving behaviors to other scenarios within the 
simulation, and learners’ attitudes towards and experiences 
with the learning environment.  

 

A. Goals of the Study 
Drivers worldwide learn DD in driving schools and are 

expected to apply it in the pretest. We expect that experiences 
with the simulator at Level 1 will introduce changes in 
participants’ perception of efficient CF strategies, resulting in 
their adopting DI strategies in the posttest. Previous studies 
described how DD and DI differ and the benefits of DI driving 
[31]. Overall, the following hypotheses can be made about the 
impact of Level 1:  

Hypothesis 1 (H1): We do not expect pretest/posttest 
differences for average speed. Hypothesis 2 (H2): The posttest 
should yield a significantly lower speed dispersion, H3: a 
greater average distance to the leading car, H4: greater distance 
variability to the leading car, H5: lower risk periods (i.e., the 
time the follower remains closer to the leader than safety 
distance requests), H6: lower fuel consumption, H7: lower 
average platoon elongation, and H8: a lower dispersion of the 
platoon elongation.  

No hypotheses about people’s perception and experiences 
with the simulation and tutorial are presented, because of the 
exploratory nature of this part of the study.  

 

B. Method 
1) Participants  

Participants were students and workers from a Spanish 
university campus, and people related to them. They 
participated voluntarily, and were recruited through 
emails, advertisements and direct approach. The study 
involved 42 people, 92% working or studying at the 
university; of these, 26 were women and 16 were men. 
Their mean age was 29 years, SD = 13. Thirty-three had a 
driving license. With regard to driving experience, 20 
people had been driving for less than 5 y, five between 6 
and 15 y, nine for more than 15 y, and nine were in the 
process of obtaining their license at the time of the study 
(drivers in training). Planned comparisons between 
drivers and drivers in training showed no significant 
differences in initial driving behaviors (see section C). As 
for driving distances, 26 participant drivers drove less 
than 10,000 km per year, four drove between 10,000 and 
20,000 km, and one drove more than 20,000 km per year. 
Urban driving characterized 60% of the cases, followed 
by motorway driving, then driving on rural roads. 

2) Materials  
Instruments included sociodemographic and attitude 
questionnaires and the learning environment simulator 
and tutorials.  
The sociodemographic questionnaire, delivered through 
Google Forms, included items regarding name, age, 
gender, possession of a driving license, driving 
experience, annual mileage and habitual driving 
environments. 
Attitude questionnaires examined participants’ 
experiences with both the tutorials and the activity with 
the simulator (Levels 0 and 1). Tutorials were examined 
with four items using mixed directionalities with 7-level 
Likert-type scales regarding the tutorial’s agreeableness 
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(disliked to liked), interestingness (not interesting to 
interesting), duration (short to long), and level of 
difficulty (difficult to easy). Participants were also offered 
an opportunity to see the tutorial again (1 = yes; 2 = no). 
Simulator practice was assessed by asking participants 
about their liking (1 = I liked it; 7 = I didn’t like it), its 
usefulness (1 = it is not useful; 7 = it is useful), real-life 
applicability (1 = not applicable; 7 = applicable), and 
timing (1 = short; 7 = long). They were offered to repeat 
practice (1 = yes; 2 = no) and use of the WDC simulator 
(Levels 0, 1, and evaluation). 
The learning materials used are the following. In Level 0, 
participants followed a car travelling at a constant speed 
of 9 m/s (30.6 km/h). In the evaluation, participants 
followed a car travelling with stop-and-go cycles of a 
sinusoidal function built at a median speed of 9 m/s (30.6 
km/h). Tutorials included Levels 0 and 1, described in the 
theoretical framework (see also Appendices I and II).  
During the activities, driving behaviors were logged, 
parsed and analyzed for the following variables: 
participant speed (average and dispersion), participant 
distance to leader (average and dispersion), participant 
risk (time spent holding too short a distance to leader, i.e., 
shorter than safety distance requires), fuel consumption 
and variations concerning the length of a platoon of 10 
DD-bot followers (average length and dispersion of the 10 
DD-bot followers). 

3) Design and procedure 
The study followed a pretest-intervention-posttest single-
group design. The intervention lasted approximately 30 
min. It was conducted in a university laboratory. Each 
participant was seated before a Windows computer with a 
24-in screen. The experiment included the following 
steps: (1) Participants filled out a consent form; (2) The 
experimenter explained that the study had four phases 
(Module 0, evaluation, Module 1, evaluation), and that 
practice on Levels 0 and 1 was preceded by a tutorial on 
how the simulator works; (3) Participants completed the 
demographic questionnaire, (4) viewed the first tutorial 
(Level 0: know the controls), and answered the 
corresponding tutorial questionnaire, then practiced on 
the simulator (Level 0), and answered the simulator 
questionnaire; (5) Participants then entered the evaluation 
level on the simulator, following this basic instruction: 
“Without putting your safety at risk, follow this vehicle 
that stops-and-goes. You will not have any visual aids”; 
(6) Participants then viewed the second tutorial (Level 1: 
the traffic-light analogy), answered the tutorial 
questionnaire, entered the simulator (Level 1) and 
answered the simulator questionnaire; (7) Participants 
entered the evaluation level on the simulator again and 
received this basic instruction: “Without putting your 
safety at risk, follow this vehicle that stops-and-goes, in 
the way you consider efficient. You will not have any 
visual aids”. Finally, after finishing the posttest, 
participants were appropriately debriefed. 

4) Data analysis 
Questionnaire responses were flipped in the same 
direction and then analyzed for the whole group using 

descriptive and inferential statistics to compare pretest 
and posttest results. The simulator included a data-mining 
component that collected and computed the driving 
behaviors. These were then analyzed for the whole group 
and compared for the pretest and the posttest. The analysis 
was conducted with the statistical package IBM-SPSS for 
Windows, version 22.0. 
 

C. Results 
To explore the impact of previous driving experience, drivers 

and drivers in training were compared using t-tests. No 
significant differences emerged between them for the variables 
evaluating tutorials and practice on the simulator in Levels 0 
and 1 (Appendix III). Differences between drivers and drivers 
in training were also sought for variables concerning practice in 
the pretests and posttests. Here also, no significant differences 
emerged (Appendix IV). The absence of differences between 
both groups is probably due to the simplicity of the CF scenario 
proposed, but it also points to a generalization of peer-following 
adaptations observed in pedestrian behavior [50]. Because of 
this lack of difference between the two groups, their results 
have been combined. 
 
1) Descriptive Analysis 

DI driving involves a number of patterns: smaller changes 
in speed, greater distances from the leader with greater 
fluctuations and a general decrease in risky behaviors. 
Such changes would also result in lower fuel 
consumption. To test our hypotheses regarding type of 
driving, we compare these variables for the pretest and 
posttest driving sessions (Table 2).  

 
TABLE II 

PERFORMANCE MEASURES FOR PRETEST AND POSTTEST 
SIMULATOR DRIVING 

 Pretest Posttest 
Variables M SD M SD 
Average speed (m/s)1 7.93 .59 7.35 1.28 
Speed dispersion (m/s) 4.53 1.80 2.75 1.81 
Average distance to the leader (m) 74.66 55.33 124.50 93.02 
Distance dispersion (m) 25.75 11.87 39.05 30.40 
Risk (s too close car-following) 2.62 5.57 .12 .50 
Fuel consumption (l) 15.11 5.39 10.53 4.95 
Average platoon elongation (m) 125.72 5.33 122.62 8.86 
Dispersion of platoon elongation (m) 33.55 14.00 19.79 13.60 

1 Units are simulated, designed to relate to real-world experiences, keeping 
the proportions of car size, distance, and so forth. Risk, in s: too close, 
disregarding safety distance 
 

The participants showed quite consistent changes before 
and after following Level 1 in the WDC. Drivers 
moderated speed fluctuations with an effect on fuel 
consumption. To maintain inertia, drivers adopted larger 
CF distances to the leader. Participants learned to play 
with distance to maintain inertia regardless of the leader’s 
speed variations. Correspondingly, the dispersion of the 
10 DD-bot car followers (following a steadier participant) 
was also reduced in the posttest. 
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Table 3 presents descriptive statistics for the 
questionnaire responses given after participants watched 
the tutorials and practiced on the simulator.  
 

TABLE III 
PARTICIPANT’S EVALUATION OF TUTORIALS 0 AND 1, AND 

PRACTICE ON LEVELS 0 AND 1 
 Tutorial 0 Tutorial1 
Item M SD M SD 
In general, did you liked the tutorial? 5.19 1.91 5.61 1.87 
Was the tutorial interesting? 5.17 1.88 6.07 1.65 
Was it short or long? 2.59 1.30 3.05 1.18 
Was the tutorial easy to follow? 5.44 1.50 6.15 1.35 
 Level 0 Level 1 
 M SD M SD 
Did you like the experience on this level?  5.22 1.75 5.78 1.56 
Was this practice useful? 5.24 1.68 6.00 1.41 
Do you think that is applicable to real life? 5.27 1.63 5.90 1.34 
Was there enough time for practice? 3.95 1.32 3.42 1.18 

 
When asked if they wanted to see the tutorials or practice 
on the simulator again, 95.1% (Tutorial 0), 97.6% 
(Tutorial 1) and 100% of participants (Simulators 0 and 
1) declined. 
Participants generally liked both tutorials and found them 
relatively interesting, of medium duration, and 
experienced a medium level of difficulty in following 
them. The experiences with the driving course were also 
generally liked, and perceived as useful and applicable; 
they reported sufficient time to practice. 
 

2) Inferential Analysis 
Comparisons of means of performance measures was 
conducted using Student t tests. A higher average speed 
was observed in the pretest compared with the posttest, t 
(41) = 2.93, p < .01, Cohen’s d = .580. Speed dispersion 
was also greater in the pretest, t (41) = 7.10, p < .005, d = 
.986. Average distance to the leader was greater in the 
posttest, t (41) = -5.06, p < .005, d = .0.651, as was 
distance variability, t (41) = -3.22, p < .003, d = .576. In 
line with these results, a higher risk index was observed 
in the pretest, t (41) = 3.05, p < 0.005, d = .632. Greater 
fuel consumption was also observed in the pretest, t (41) 
= 5.57, p < .005, d = .886. Finally, average elongation of 
the platoon of followers (10 virtual DD-bots) was higher 
in the pretest, t (41) = 2.05, p < .05, d = .424, and 
dispersion of the platoon elongation was higher in the 
pretest, t (41) = 7.19, p < .005, d = .997 (Table 2). Most 
of effect the sizes obtained have medium-large sizes 
according to Cohen’s [51] convention. 
Comparisons of means of participants’ evaluations of 
tutorials and practice on simulator was conducted using 
Student t tests. To summarize the results, Tutorials 0 and 
1 were functional, helping participants build adequate 
expectations for practice on the WDC. Differences 
between the pretest and posttest confirm that Level 1 was 
successful in changing CF strategies from DD to DI. 
Regarding liking of the tutorial, no significant differences 
were observed between the evaluations conducted on 
Tutorial 0 versus Tutorial 1, t (40) =1.47, p = .15 (Table 

3). However, Tutorial 1 was seen as significantly more 
interesting, t (40) = -2.49, p < .05, Cohen’s d = .510. 
Although Tutorial 0 (135 s) was actually longer than 
Tutorial 1 (124 s), it was judged to be shorter, t (40) = -
2.46, p < .05, d = .373. Finally, Tutorial 1 was perceived 
as easier to follow than Tutorial 0, t (40) = -3.46, p < .001, 
d = .495. Participants did not show differences in their 
wish to see again any tutorial in particular (p = n.s.).  
Participants liked practicing with Level 1 more than with 
Level 0, t (40) = 2.25, p < .05, d = .338. Practicing Level 
1 was considered more useful, t (40) = -2.82, p < .01, d = 
.486, and more applicable to real life than Level 0, t (40) 
= -2.31, p < .05, d = .425. Finally, participants judged 
(correctly) the time available in Level 1 (150 s) to be 
shorter than in Level 0 (180 s), t (40) = 2.95, p < .005, d 
= .427. Participants did not show differences in their wish 
to repeat practice of any level in particular (p = n.s., Table 
3). 

 

D. Discussion 
Participants showed changes in their driving behaviors after 

driving in the WaveDriving simulation. Compared with their 
earlier driving behaviors, their later speeds decreased and 
fluctuated less, reducing their fuel consumption. They adopted 
larger CF distances, and increasingly changed distance from the 
car in front of them to reduce changes in inertia. Finally, the 
platoon of the participant’s car and the robot cars shortened and 
its size fluctuated less. 

Results confirm that the traffic-light analogy is powerful 
enough to create knowledge transfer: from passing changing 
traffic lights to following a leader that systematically stops-and-
goes. Drivers understood and accepted that following a car that 
accelerates (green), decelerates (yellow), and then stops (red) is 
not the only or the most efficient alternative. As a consequence, 
performance changed significantly from pretest to posttest. 
Drivers’ speed dispersion decreased, becoming more uniform 
(H2), and, as a consequence, the average distance (H3) and 
distance variability (H4) increased in the posttest. Following a 
wavering leader at a uniform speed causes less speed variability 
but requires more distance (than safety distance) to adapt to the 
leader’s swinging pattern. As a consequence, there is less risk 
exposure (H5: more distance is kept because safety distance is 
only a segment in the extension-retraction CF following 
sequence) and less fuel consumption (H6: more uniform speed 
maintained). Finally, the platoon of DD-bot followers does not 
expand (H7), and it moves (H8) as much as when participants 
adopt the DI technique. Together, these behavior changes 
indicate a shift from DD to DI driving, supporting our main 
hypothesis. The DI technique promotes more efficient, but also 
safer, traffic flows concerning the drivers following behind 
[52]. 

It seems that the design of the WDC simulation and tutorials 
produced an important change in people’s simulated driving 
behaviors in the rather short time of less than 1 h. The results of 
our study reinforce the cumulated design principles underlying 
the WDC. These principles include signaling, redundancy, 
temporal contiguity, and modality or embodiment, and were 
studied previously [35], [46], see Appendix I eight-row. 
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However, the particular combination of principles is new, and 
is specific to the driving learning school environment. 

The only unconfirmed hypothesis refers to average speed 
(H1). A proficient DI method involves maintaining practically 
the same average speed as the leader, but this result was not 
confirmed: average speed was significantly lower in the 
posttest. This result, however, is in line with our expectations: 
Level 1 focuses on the importance of adopting a uniform speed 
to be more efficient, and drivers understood the idea and 
transferred it to the evaluation task. Only Level 2 (the spring 
analogy) teaches about decomposing CF distance into two 
distances: safety distance + anti-jam distance. Future studies 
requiring drivers to complete the first two WDC levels should 
confirm this expectation. 

Participants’ experiences with the driving course were 
positive: they generally liked the experience and perceived it as 
useful and applicable to real settings. They believed that they 
had enough time to practice. They preferred practice with Level 
1 to that with Level 0, and considered Level 1 more useful and 
applicable to real life. 

With respect to the tutorials, generally participants liked both 
and found them relatively interesting and of medium duration, 
and experienced a medium level of difficulty in following them, 
with no significant differences between the different tutorials. 

Tutorial 1, which introduced the traffic-light analogy and 
supported learning how to assume the very same goal (i.e., 
passing traffic lights in green) more efficiently (holding 
uniform speed, avoiding stop-and-go cycles and their undesired 
consequences), was seen as more interesting, and longer, but 
easier to follow than Tutorial 0, which merely explained how 
the different visual and operative resources work on the WDC 
simulator. Also, Level 1, the practical session after Tutorial 1, 
was better liked and found to be more useful and applicable than 
Level 0, the practical session after Tutorial 0. Participants may 
have had some fun changing visual perspectives and positions, 
changing day to night, and the like, but Tutorial 0 and Level 0 
only attempted to explain how the simulator works. Tutorial 1, 
however, invited participants to learn and discover something 
new that could be relevant to their everyday lives. Participants 
distinguished and enjoyed the more practical and relevant side 
of the WDC.  

Some limitations of this work must now be considered for 
future studies, for example, having a somewhat larger sample, 
with drivers of older average age. Also incorporating a follow-
up test to check if and to what extent the acquisition of the DI 
technique is maintained. It would also be pertinent to include a 
control group to determine the effect of the set (tutorial and 
practice in the simulator) versus mere practice in the simulator 
on learning. Although recent studies have analyzed this aspect 
globally [53], the incremental contribution of each of the 
modules remains to be determined. Finally, it would be 
important to introduce some diversification both in visual 
parameters (eg, type of scenarios driven) and in performance 
parameters (eg, average speed following the leader), thus 
achieving a greater generalization of the results. 

IV. CONCLUSION 

In this article, we propose that it is possible to improve traffic 
flows and reduce congestion if we change our CF strategies. So 

far, we have been adopting the DD strategy as if it were the only 
possible strategy, but mathematics, physics and studies 
conducted to date indicate that DI is a more functional and 
efficient CF alternative. Note that these are two opposing 
strategies for two key parameters: speed variability and CF 
distance. 

The present study presents a pretest/posttest comparison of the 
first level of the WDC, the traffic-light analogy, a conceptual 
device capable of promoting the correct transfer learning of the 
first key parameter: speed variability. Learning the most 
efficient way forward when passing traffic lights (the source 
analog) should promote some transfer to the CF situation (the 
target analog). Besides this main goal, the present study 
compares attitudes towards the WDC introductory 
tutorial/practice (Level 0: how the simulator works) with the 
substantial tutorial/practice (Level 1: rethinking passing traffic 
lights). Our basic assumption is that Tutorial 0 simply explains 
how the “machine” works, whereas Tutorial 1 addresses 
significant and practical issues relevant to driving activity. 
Results indicate that Tutorial 1 was perceived as significantly 
shorter, easier and more interesting than Tutorial 0. Results for 
practice (Level 0 vs. Level 1) are in line with results observed 
with theory (Tutorial 0 vs. Tutorial 1). Level 1 was better liked, 
and perceived as shorter, more useful and applicable than Level 
0.  

Overall, being exposed to Tutorial 1 and then practicing Level 
1 on the WDC yielded the expected learning transfer to 
performance. The posttest yielded lower speed dispersion, 
greater average distance and distance variability, and a lower 
risk index and fuel consumption than the prettest. Also, the 
platoon of DD-bot followers occupied less road space on the 
posttest. However, average speed differed: it was significantly 
lower on the posttest. This result indicates that CF distance 
during the posttest was greater than needed. Level 1 promoted 
an adequate learning transfer to maintaining uniform speed 
(lower speed variability). But this level alone does not generate 
the expected transfer in terms of average CF speed, which 
should not differ from pretest to posttest. 

Most driving simulators (also the gaming industry) focus on 
realism and perceptual-motor skills (i.e., basic psychological 
processes of attending, sensing and perceiving, then reacting 
while driving). Rather than for testing or gaming, the WDC 
presents a unique application of driving simulators for learning 
how different individual actions within the line have broader 
consequences for traffic flows. The WDC invites the learner to 
transcend their personal view and to elaborate larger collective 
implications. The WDC recurs to unusual tools and 
perspectives: participants drive through unreachable points of 
view (e.g., bird’s-eye views from different angles and 
perspectives concerning the whole platoon), using non-existent 
tools (e.g., traffic lights mounted above cars) and higher-level 
psychological processes (e.g., integrating the coming 
information with previous knowledge into new mental models 
to adopt specific behaviors). Hence, the WDC enlarges the 
family of common driving simulators, making alternative 
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behaviors possible and contributing to reaching more 
sustainable, uninterrupted traffic flows.  

APPENDIX 
Appendix I. Design Template. Tutorial 0. Scenes 1-24 
https://cutt.ly/kgzsebF  
 
Appendix II. Some key parts concerning Tutorial 1: The 

Traffic Light Analogy 
 

 
Fig. 3. The cars on the left lane accelerate because these 

drivers think they’ll reach the traffic lights in green . . . but they 
do not arrive on time and they have to stop. So running a lot 
doesn’t help me achieve my goal. (voiced in 12 s). 

 

 
Fig. 4. With the multi-camera, I can control the speed of 

arrival from other perspectives. (voiced in 13 s). 
 

 
Fig. 5. Let’s activate the “traffic lights” option and see what 

happens . . . (voiced in 7 s) 
 

 
Fig. 6. Because the red vehicle has to brake at the traffic light, 

it is a red light for the vehicles that follow it . . . The first driver 
determines what happens to the entire platoon. (voiced in 11 s). 

 

 
Fig. 7. What we do ahead affects far back. A single driver 

can create very different traffic scenarios. (voiced in 9 s). 
 
Appendix III. Tutorial and Practice Evaluation by Drivers 

and Drivers in Training 
 

TABLE IV 
MEDIAN DIFFERENCES BETWEEN DRIVERS (D; N = 32) AND 

DRIVERS IN TRAINING (DI; N = 9) AFTER MANN-WHITNEY U 
TESTS 

 Tutorial 0 Tutorial 1 
Variables on T D DT U D DT U 
Did you like the T? 6.0 3.0 114.5 6.5 6.0 125.5  
Was the T interesting?  6.0 6.0 137.5  7.0 7.0 144.0  
Was it short or long? 2.0 3.0 103.0  3.0 3.0 126.0  
Was it easy to follow? 6.0 6.0 85.0 6.0 7.0 105.0  

All comparisons were non-significant, p >.05, two-tailed M-W U. T = Tutorial 
 

TABLE V 
MEDIAN DIFFERENCES BETWEEN DRIVERS (D; N = 32) AND 

DRIVERS IN TRAINING (DI; N = 9) AFTER MANN-WHITNEY U 
TESTS 

 Level 0 Level 1 
Practice on WDC D DT U D DT U 
Did you like the level? 5.5 5.0 133.0  6.0 6.0 120.5  
Was practice useful?  5.5 6.0 137.0  6.5 6.0 140.5  
Applicable to real life? 6.0 5.0 119.0  7.0 6.0 110.0  
Enough practice time? 4.0 4.0 105.5  4.0 4.0 107.5  

All comparisons were non-significant, p >.05, two-tailed M-W U.  
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TABLE VI 
MEAN DIFFERENCES BETWEEN DRIVERS (D; N = 32) AND 

DRIVERS IN TRAINING (DI; N = 9) AFTER MANN-WHITNEY U 
TESTS 

 Pretest Posttest 
Practice on 
WDC 

D DT U D DT U 

Average speed (m/s) 7.97 7.78 123.0  7.27 7.64 112.5  
Speed dispersion 
(m/s) 

4.42 4.93 125.0  2.80 2.57 145.0  

Average D to L (m) 78.4 61.1 120.0  129.6 105.9 131.0  
D dispersion (m) 25.9 25.2 140.0  39.72 36.57 138.0  
Risk  1.91 5.22 117.5  .15 .00 135.0  
Fuel consumption (l) 14.7 16.7 115.0  10.9 9.08 138.0  
Average PE (m) 126.2 124.0 110.5  121.8 125.7 97.0  
Dispersion PE (m)  32.7 36.6 122.0  18.2 14.7 145.0  

All comparisons were non-significant, p >.05, two-tailed M-W U. D = 
Distance, L = Leader, PE = Platoon Elongation 

ACKNOWLEDGMENT 
We thank Kristen Ebert-Wagner and Virginia Navascués 

Howard for proof reading the article. 

REFERENCES 

[1] United Nations, Department of Economic and Social Affairs, Population 
Division. World urbanization prospects: The 2018 revision 
(ST/ESA/SER.A/420). New York: United Nations, 2019.  

[2] P. Goodwin. The economic costs of road traffic congestion. 
London: UCL (University College London), the Rail Freight Group, 
2004. 

[3] M. Sweet. Traffic congestion’s economic impacts: Evidence from U.S. 
metropolitan regions. Urban Studies, 51(10), pp. 2088–2110, 2014. 

[4] F. Caiazzo, A. Ashok, I. Waitz, S. Yim and S. Barret. Air pollution and 
early deaths in the United States. Part I: Quantifying the impact of major 
sectors in 2005. Atmospheric Environment, 79, pp. 198–208, 2013. 

[5] BOE –Boletín Oficial del Estado. Real Decreto 126/2014, de 28 de 
febrero, por el que se establece el currículo básico de la Educación 
Primaria. Ministerio de Educación, Cultura y Deporte, 2014. 
https://www.boe.es/eli/es/rd/2014/02/28/126 

[6] BOE –Boletín Oficial del Estado. Real Decreto 1105/2014, de 26 de 
diciembre, por el que se establece el currículo básico de la Educación 
Secundaria Obligatoria y del Bachillerato. Ministerio de Educación, 
Cultura y Deporte, 2015. 

[7] Israel Ministry of Education. Israel National Curriculum: Road Safety 
Education K-12. Ministry of Education. Culture and Sports, 1994. 

[8] Israel Ministry of Education. Outline for the tenth grade road safety 
education. Ministry of Education. Culture and Sports, 2018. 

[9]  J. D. Gobert and B. C. Buckley. Introduction to model-based teaching 
and learning in science education. International Journal of Science 
Education, 22(9), pp. 891–894, 2000.  

[10]  P. S. Oh and S. J. Oh. What teachers of science need to know about 
models: An overview. International Journal of Science Education, 33(8), 
pp. 1109–1130, 2011.  

[11]  R. S. Justi and J. K. Gilbert. Modelling, teachers’ views on the nature of 
modelling, and implications for the education of modellers. International 
Journal of Science Education, 24(4), pp. 369–387, 2002.  

[12]  B. S. Kerner. Introduction to modern traffic flow theory and control: The 
long road to three-phase traffic theory. Heidelberg [Germany]: Springer 
Science & Business Media, 2009.  

[13]  D. C. Gazis and R. Herman. The moving and “phantom” bottlenecks. 
Transportation Science, 26, pp. 223–229, 1992.  

[14]  M. Saifuzzaman and Z. Zheng. Incorporating human-factors in car-
following models: A review of recent developments and research needs. 
Transportation Research, (Part C), 48, pp. 379–403, 2014. 

[15] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. 
Nishinari, S. Tadaki and S. Yukawa. Traffic jams without bottlenecks 
experimental: Evidence for the physical mechanism of the formation of a 
jam. New Journal of Physics, 10(033001), pp. 1–7, 2008. 

[16] S. Tadaki, M. Kikuchi, M. Fukui, A. Nakayama, K. Nishinari, A. Shibata, 
Y. Sugiyama, T. Yosida and S. Yukawa. Phase transition in traffic jam 
experiment on a circuit. New Journal of Physics, 15(103034), pp. 1–20, 
2013.  

[17] W. Wille. “Self-induced oscillation and speed production”, in. Traffic 
psychology: An international perspective, D. Hennessy, Ed. New York: 
Nova Science Publishers, 2011, pp. 319–342. 

[18] M. Wille and G. Debus. “Regulation of speed and time-headway in 
traffic” in Traffic & transport psychology: Theory and application. G. 
Underwood, Ed. London: Elsevier, 2005, pp. 327–337.  

[19] L. Pariota, G. N. Bifulco, and M. Brackstone. A linear dynamic model for 
driving behavior in car following. Transportation Science, 50, pp. 1032–
1042, 2016. https://doi.org/10.1287/trsc.2015.0622 

[20] R. E. Wilson. Mechanisms for spatiotemporal pattern formation in 
highway traffic models. Philosophical Transactions of the Royal Society: 
Part A, Mathematical, Physical and Engineering Sciences, 366, pp. 2017–
2032, 2008.  

[21] D. Ni. Traffic flow theory: Characteristics, experimental methods, and 
numerical techniques. London: Elsevier, 2016. 

[22] J. Fourier. Theorie analytique de la chaleur. Paris: Firmin Didot, 1822; 
Cambridge: Cambridge University Press, 2009. 

[23] A. H. Cromer. Physics for the life sciences. New York: McGraw-Hill, 
1977. 

[24] M. T. Blanch, A. Lucas-Alba, T. Bellés, A. Ferruz, O. Melchor, L. 
Delgado, F. Ruíz and M. Chóliz, M. Car following: Comparing distance-
oriented vs. inertia-oriented driving techniques. Transport Policy, 67, pp. 
13–22, 2018. 

[25] A. Lucas-Alba, Ó. M. Melchor, A. Hernando, A. Fernández-Martín, Mª 
T. Blanch-Micó and A.S. Lombas. Distressed in the queue? 
Psychophysiological and behavioral evidence for two alternative car-
following techniques. Transportation Research Part F: Traffic 
Psychology and Behavior, 74, pp. 418–432, 2020. 

[26] F. Carrasco. “Estudio del efecto de la conducción eficiente sobre el 
tráfico”, M.S. Thesis. Escuela Técnica Superior de Ingeniería. 
Universidad Politécnica de Madrid, Madrid, Spain, 2017. 

[27] E. Keskinen, E., and K. Hernetkoski. “Driver education and training” in 
Handbook of traffic psychology. B. E. Porter. Ed. Amsterdam: Elsevier. 
2011, pp. 403-422. 

[28] A. Sundström. Self-assessment of driving skill – A review from a 
measurement perspective. Transportation Research Part F: Traffic 
Psychology and Behaviour, 11, pp. 1-9, 2008. 

[29] L. Bates, A. Hawkins, D. Rodwell, L Anderson, B. Watson, A. J. Filtness, 
and G. S. Larue. The effect of psychosocial factors on perceptions of 
driver education using the goals for driver education framework. 
Transportation research part F: traffic psychology and behaviour, 66, pp. 
151-161, 2019. 

[30] J. G. Molina, R. García-Ros, and E. Keskinen. Implementation of the 
driver training curriculum in Spain: An analysis based on the Goals for 
Driver Education (GDE) framework. Transportation research part F: 
traffic psychology and behaviour, 26, pp. 28-37, 2014. 

[31] O. Melchor, A. Lucas-Alba, A. M. Ferruz, M. T. Blanch and J. Martin-
Albó. The WaveDriving course. Transportation Research Procedia, 33, 
pp. 179–186, 2018. 

[32] A. D. Baddeley. Working memory: Theories, models, and 
controversies. Annual Review of Psychology, 63, pp. 1–29, 2012.  

[33] A. D. Baddeley, G.J. Hitch and R.J. Allen. From short-term store to 
multicomponent working memory: The role of the modal model. Memory 
& Cognition, 47, pp. 575–588, 2019. https://doi.org/10.3758/s13421-
018-0878-5 

[34] W. Schnotz. “Integrated model of text and picture comprehension”, in The 
Cambridge handbook of multimedia learning, R. Mayer, Ed., 2nd ed. New 
York: Cambridge University Press, 2014, pp. 72–103.  

[35] R. Mayer. “Cognitive theory of multimedia learning”, in The Cambridge 
handbook of multimedia learning, R. Mayer, Ed., 2nd ed. New York: 
Cambridge University Press, 2014, pp. 43–71.  

[36] F. Paas and J. Sweller, “Implications of cognitive load theory for 
multimedia learning”, in The Cambridge handbook of multimedia 
learning, R. Mayer, Ed., 2nd ed. New York: Cambridge University Press, 
2014, pp. 27–42. 

[37] J. J. G. van Merriënboer and L. Kester, “The four-component instructional 
design model: Multimedia principles in environments for complex 

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3208003

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 22,2022 at 06:37:44 UTC from IEEE Xplore.  Restrictions apply. 



12 
TLT-2020-10-0325 
 

learning”, in The Cambridge handbook of multimedia learning, R. Mayer, 
Ed., 2nd ed. New York: Cambridge University Press, 2014. pp. 104–148.  

[38] A. Pollatsek, W. Vlakveld, B. Kappé, A. K. Pradhan and D. L. Fisher, 
“Driving simulators as training and evaluation tools: Novice drivers”, in 
Handbook of driving simulation for engineering, medicine, and 
psychology, D. L. Fisher, M. Rizzo, J. K. Caird and J. D. Lee, Eds. Boca 
Raton, FL: CRC Press, 2011, pp. 30-1–30-18.  

[39] W. Schiff, W. Arnone and S. Cross. Driving assessment with computer-
video scenarios: More is sometimes better. Behavior Research Methods, 
Instruments, & Computers, 26, pp. 192–193, 1994.  

[40] S. Beloufa, F. Cauchard, J. Vedrenne, B. Vailleau, A. Kemeny, F. 
Mérienne and J. M. Boucheix. Learning eco-driving behaviour in a 
driving simulator: Contribution of instructional videos and interactive 
guidance system. Transportation Research Part F: Traffic Psychology 
and Behaviour, 61, pp. 201–216, 2019.  

[41] A. Arslanyilmaz and J. Sullins. Multi-player online simulated driving 
game to improve hazard perception. Transportation Research Part F: 
Traffic Psychology and Behaviour, 61, pp. 188–200, 2019.  

[42] V. Cavallo, A. Dommes, N. T. Dang and F. Vienne. A street-crossing 
simulator for studying and training pedestrians. Transportation Research 
Part F: Traffic Psychology and Behaviour, 61, 217–228, 2019. 

[43] B. Blissing, F. Bruzelius and O. Eriksson. Driver behavior in mixed and 
virtual reality – A comparative study. Transportation Research Part F: 
Traffic Psychology and Behaviour, 61, pp- 229–237, 2019.  

[44] S. T. Levy, R. Peleg, E. Ofeck, N. Tabor, I. Dubovi, S. Bluestein and H. 
Ben-Zur. Designing for discovery learning of complexity principles of 
congestion by driving together in the TrafficJams simulation. 
Instructional Science, 46(1), pp. 105-132, 2018. 

[45] A. Bandura. Social foundations of thought and action. Englewood Cliffs, 
NJ: Prentice-Hall, 1986. 

[46] R. Mayer. Using multimedia for e-learning. Journal of Computer Assisted 
Learning, 33(5), pp. 403–423, 2017. https://doi.org/10.1111/jcal.12197 

[47] H. Y. Tong, W. T. Hung and C. S. Cheung. On-road motor vehicle 
emissions and fuel consumption in urban driving conditions. Journal of 
the Air & Waste Management Association, 50(4), pp. 543–554, 2000.  

[48] D. Gentner, D. “Analogy”, in A companion to cognitive science. W. 
Bechtel and G. Graham, Eds. Oxford: Blackwell, 1998, pp. 107–113. 

[49] K. J. Holyoak. “Analogy and relational reasoning” in. The Oxford 
handbook of thinking and reasoning. K. J. Holyoak and R. G. Morrison, 
Eds.Oxford: Oxford University Press, 2013, pp. 234–259. 

[50] M. Moussaïd, D. Helbing and G. Theraulaz. How simple rules determine 
pedestrian behavior and crowd disasters. PNAS, 108(17), pp. 6884-6888, 
2011.  

[51] J. Cohen. Statistical Power Analysis for the Behavioral Sciences (2nd 
ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, 1988. 

[52] G. A. Davis, and T. Swenson. Collective responsibility for freeway rear-
ending accidents? An application of probabilistic causal models. Accident 
Analysis and Prevention, 38, pp. 728–736, 2006.  

[53] E. Tenenboim, A. Lucas-Alba, O.M., Melchor, S. Bekhor, and T. Toledo. 
Car following with an inertia-oriented driving technique: A driving 
simulator experiment. Transportation Research Part F: Traffic 
Psychology and Behaviour, 89 pp. 72-83, 2022. 
https://doi.org/10.1016/j.trf.2022.06.003 
 

Antonio Lucas-Alba received his PhD in 
Psychology from the University of 
Valencia (UVEG) in 2009. He joined the 
Institute of Robotics and Communication 
Technologies (IRTIC) in 1999, and then 
the Institute of Traffic and Road Safety 
(INTRAS) in 2002, both at UVEG. He 
joined the Department of Psychology and 
Sociology at the University of Zaragoza 

(UZ) in 2011. He is currently an associate professor of 
experimental psychology at the Faculty of Social and Human 
Sciences of the UZ.  

 
Sharona T. Levy received her Ph.D. from Tel-Aviv University 
in 2002, at the Knowledge Technology Lab and was a 
postdoctoral fellow at the Center for Connected Learning and 

Computer-based Modeling. She is a faculty 
member at the University of Haifa, and part 
of the Preschool Education and 
Development and Technologies in 
Education divisions in the Faculty of 
Education. Her prime interests are in 
facilitating and studying people's learning 
about complex systems; and, restructuring 
conceptual knowledge in science for 

deeper and easier learning.  
  

Óscar M. Melchor is an entrepreneur 
focused on the development of innovative 
science-based projects, linked to 
mathematics, physics, computer science or 
living nature. He has worked on objectives 
such as developing a new traffic 
engineering, stabilizing military satellites, 
evaluating human reactions to computers, 
or promoting a pipeline engineering, 

among others. He received the Certificate of Excellence from 
the General Directorate of Traffic (2013), and the National 
Medal of Honor in Occupational Risk Prevention (2018).  

 
Ana Zarzoso-Robles graduated in 
Psychology at the University of Zaragoza 
(2019). She earned an excellent academic 
record, including her graduation project, 
exploring the relationships between car-
following and traffic congestion. She is 
currently a Resident Internal Psychologist 
at Son Espases University Hospital (Palma 
de Mallorca, Spain).  

 
Ana M. Ferruz received a degree in 
Psychology from the University of 
Zaragoza (UZ) in 2015 and a Master's 
degree in Work and Organization 
Psychology, Legal-Forensic and Social 
Intervention from the University of 
Santiago de Compostela in 2016. She 
joined the doctorate in Education in 2017 
at the UZ, and is now preparing her 

doctoral thesis. She works as a psychologist at the Aragonese 
Institute of Social Services (IASS) of the Government of 
Aragon (Spain).  

 
Maria Teresa Blanch received her PhD in 
Psychology from the University of 
Valencia (UVEG) in 2016. She joined the 
Institute of Traffic and Road Safety 
(INTRAS) at UVEG in 2001 till 2014, then 
worked in traffic safety related projects at 
the University of Zaragoza till 2019. She is 
currently teaching Psychology of 
Communication at the Faculty of 

Psychology of the Catholic University of Valencia.  
 

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3208003

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 22,2022 at 06:37:44 UTC from IEEE Xplore.  Restrictions apply. 



13 
TLT-2020-10-0325 
 

Andrés S. Lombas graduated and received 
his doctorate in Psychology from the 
University of the Basque Country 
(UPV/EHU) in 1998 and 2003, 
respectively. He joined the Department of 
Psychology and Sociology at the 
University of Zaragoza (UZ) in 2009. He is 
currently an associate professor of 
Psychology (tenured) in Methodology of 

the Behavioral Sciences section. His main research interest is 
the study of the factors related to psychological well-being. 
 
 

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3208003

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 22,2022 at 06:37:44 UTC from IEEE Xplore.  Restrictions apply. 


	I. INTRODUCTION
	A. The Solution: Rethinking Car-Following
	B. The Challenge: Changing Driving Behavior

	II. The Way Forward: Designing a Suitable Learning Environment
	A. The Vision: Mirroring the Driving School
	B. The WDC Structure: Information and Guide, Practice and Evaluation
	C. The Learning Modules: Levels 0-3
	D. Level 1: The Traffic-Light Analogy

	III. The Study
	A. Goals of the Study
	B. Method
	C. Results
	D. Discussion

	IV. Conclusion
	In this article, we propose that it is possible to improve traffic flows and reduce congestion if we change our CF strategies. So far, we have been adopting the DD strategy as if it were the only possible strategy, but mathematics, physics and studie...
	The present study presents a pretest/posttest comparison of the first level of the WDC, the traffic-light analogy, a conceptual device capable of promoting the correct transfer learning of the first key parameter: speed variability. Learning the most...
	Overall, being exposed to Tutorial 1 and then practicing Level 1 on the WDC yielded the expected learning transfer to performance. The posttest yielded lower speed dispersion, greater average distance and distance variability, and a lower risk index ...
	Most driving simulators (also the gaming industry) focus on realism and perceptual-motor skills (i.e., basic psychological processes of attending, sensing and perceiving, then reacting while driving). Rather than for testing or gaming, the WDC presen...


