16 research outputs found

    Risk Factors for the Development of Cataract in Children with Uveitis

    Get PDF
    PURPOSE: To determine the risk factors for the development of cataract in children with uveitis of any etiology. DESIGN: Cohort study. METHODS: Two hundred forty-seven eyes of 140 children with uveitis were evaluated for the development of vision-affecting cataract. Demographic, clinical, and treatment data were collected between the time of presentation and the first instance cataract was recorded or findings at final follow-up. Main outcome measures included the prevalence of cataract and distribution by type of uveitis, incidence of new onset cataract time to cataract development, and risk factors for the development of cataract. RESULTS: The prevalence of cataract in our cohort was 44.2% and was highest among eyes with panuveitis (77.1%), chronic anterior uveitis (48.3%), and intermediate uveitis (48.0%). The overall incidence of newly diagnosed cataract was 0.09 per eye-year, with an estimated 69% to develop uveitis-related cataract with time. The main factors related with cataract development were the number of uveitis flares per year (hazard ratio [HR] = 3.06 [95% confidence interval {CI}, 2.15–4.35], P < .001), cystoid macular edema (HR = 2.87 [95% CI, 1.41–5.82], P = .004), posterior synechia at presentation (HR = 2.85 [95% CI, 1.53–5.30], P = .001), and use of local injections of corticosteroids (HR = 2.37 [95% CI, 1.18–4.75], P = .02). Treatments with systemic and topical corticosteroids were not significant risk factors. CONCLUSIONS: In this study, we found that development of cataract is common among pediatric eyes with uveitis and is most strongly related to the extent of inflammation recurrences and ocular complications. We suggest that controlling the inflammation, even using higher doses of systemic and topical corticosteroids, is of importance in preventing ocular complications, such as cataract. Uveitis accounts for 10–15% of blindness in the developed world.1 Although pediatric uveitis is relatively uncommon, accounting for only 5–10% of all uveitis cases,2 it affects young patients, who in most cases are otherwise healthy. Vision loss results from ongoing inflammation that leads to ocular structural changes, such as cataract, corneal opacities, optic neuropathy, and retinal lesions. The most common causes of vision loss in children with uveitis are cataract, glaucoma, and chronic cystoid macular edema (CME).2, 3 In addition, any chronic visual obstruction can result in the development of amblyopia in younger children, with vision loss persisting after the inciting cause is treated.4 Such changes, together with the need for long-term treatment and continuous monitoring, can have a profound impact on their development, independence, and education. The prevalence of cataract in eyes with uveitis ranges from 20–64%,4, 5, 6, 7 and it is the most common complication of uveitis in children,8 occurring in approximately 35% of children with juvenile idiopathic arthritis (JIA)-associated uveitis9 and increasing ≀80% in adults.10, 11 Cataract progression can be the result of persistent intraocular inflammation,12, 13 can be caused by surgery for uveitis complications (eg, trabeculectomies and repair of retinal detachments), or can be a consequence of uveitis treatment, particularly the use of local or systemic corticosteroids.14, 15, 16, 17 It results in reduced visual acuity and can have a detrimental effect on the development and academic achievements of these children.18 Studies have examined risk factors for the development of cataract among children with JIA-associated uveitis, identifying risk factors such as the presence of posterior synechiae (PS) at presentation,12, 19 the use of systemic corticosteroids,13 topical corticosteroid therapy exceeding 3 drops a day,12 or persistent, uncontrolled active inflammation,3 while early treatment with methotrexate delayed cataract progression.19 However, JIA is a unique cause of uveitis, often localized to the anterior chamber, with frequent intraocular structural changes and the early use of systemic immunosuppressive agents. It may not represent the same risks as other causes of pediatric uveitis. We examined disease- and treatment-related risk factors for cataract development in children with uveitis of any etiology. We investigated clinical and ophthalmologic characteristics, as well as treatment strategies in relation to the time interval between the first presentation with uveitis and cataract development

    HCMV Targets the Metabolic Stress Response through Activation of AMPK Whose Activity Is Important for Viral Replication

    Get PDF
    Human Cytomegalovirus (HCMV) infection induces several metabolic activities that have been found to be important for viral replication. The cellular AMP-activated protein kinase (AMPK) is a metabolic stress response kinase that regulates both energy-producing catabolic processes and energy-consuming anabolic processes. Here we explore the role AMPK plays in generating an environment conducive to HCMV replication. We find that HCMV infection induces AMPK activity, resulting in the phosphorylation and increased abundance of several targets downstream of activated AMPK. Pharmacological and RNA-based inhibition of AMPK blocked the glycolytic activation induced by HCMV-infection, but had little impact on the glycolytic pathway of uninfected cells. Furthermore, inhibition of AMPK severely attenuated HCMV replication suggesting that AMPK is an important cellular factor for HCMV replication. Inhibition of AMPK attenuated early and late gene expression as well as viral DNA synthesis, but had no detectable impact on immediate-early gene expression, suggesting that AMPK activity is important at the immediate early to early transition of viral gene expression. Lastly, we find that inhibition of the Ca2+-calmodulin-dependent kinase kinase (CaMKK), a kinase known to activate AMPK, blocks HCMV-mediated AMPK activation. The combined data suggest a model in which HCMV activates AMPK through CaMKK, and depends on their activation for high titer replication, likely through induction of a metabolic environment conducive to viral replication

    Divergent Effects of Human Cytomegalovirus and Herpes Simplex Virus-1 on Cellular Metabolism

    Get PDF
    Viruses rely on the metabolic network of the host cell to provide energy and macromolecular precursors to fuel viral replication. Here we used mass spectrometry to examine the impact of two related herpesviruses, human cytomegalovirus (HCMV) and herpes simplex virus type-1 (HSV-1), on the metabolism of fibroblast and epithelial host cells. Each virus triggered strong metabolic changes that were conserved across different host cell types. The metabolic effects of the two viruses were, however, largely distinct. HCMV but not HSV-1 increased glycolytic flux. HCMV profoundly increased TCA compound levels and flow of two carbon units required for TCA cycle turning and fatty acid synthesis. HSV-1 increased anapleurotic influx to the TCA cycle through pyruvate carboxylase, feeding pyrimidine biosynthesis. Thus, these two related herpesviruses drive diverse host cells to execute distinct, virus-specific metabolic programs. Current drugs target nucleotide metabolism for treatment of both viruses. Although our results confirm that this is a robust target for HSV-1, therapeutic interventions at other points in metabolism might prove more effective for treatment of HCMV

    Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores

    No full text
    The human CMV UL37x1-encoded protein, also known as the viral mitochondria-localized inhibitor of apoptosis, traffics to the endoplasmic reticulum and mitochondria of infected cells. It induces the fragmentation of mitochondria and blocks apoptosis. We demonstrate that UL37x1 protein mobilizes Ca(2+) from the endoplasmic reticulum into the cytosol. This release is accompanied by cell rounding, cell swelling, and reorganization of the actin cytoskeleton, and these morphological changes can be substantially blocked by a Ca(2+) chelating agent. The UL37x1-mediated release of Ca(2+) from the endoplasmic reticulum likely has multiple consequences, including induction of the unfolded protein response, modulation of mitochondrial function, induction of mitochondrial fission, and protection against apoptotic stimuli
    corecore