25 research outputs found

    ROGUE:an R Shiny app for RNA sequencing analysis and biomarker discovery

    Get PDF
    Background: The growing power and ever decreasing cost of RNA sequencing (RNA-Seq) technologies have resulted in an explosion of RNA-Seq data production. Comparing gene expression values within RNA-Seq datasets is relatively easy for many interdisciplinary biomedical researchers; however, user-friendly software applications increase the ability of biologists to efficiently explore available datasets. Results: Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, https://marisshiny.research.chop.edu/ROGUE/), a user-friendly R Shiny application that allows a biologist to perform differentially expressed gene analysis, gene ontology and pathway enrichment analysis, potential biomarker identification, and advanced statistical analyses. We use ROGUE to identify potential biomarkers and show unique enriched pathways between various immune cells. Conclusions: User-friendly tools for the analysis of next generation sequencing data, such as ROGUE, will allow biologists to efficiently explore their datasets, discover expression patterns, and advance their research by allowing them to develop and test hypotheses.</p

    A crucial role for tumor necrosis factor receptor 1 in synovial lining cells and the reticuloendothelial system in mediating experimental arthritis

    Get PDF
    Contains fulltext : 89310.pdf (publisher's version ) (Open Access)INTRODUCTION: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that mainly affects synovial joints. Biologics directed against tumor-necrosis-factor (TNF)-alpha are efficacious in the treatment of RA. However, the role of TNF receptor-1 (TNFR1) in mediating the TNFalpha effects in RA has not been elucidated and conflicting data exist in experimental arthritis models. The objective is to investigate the role of TNFR1 in the synovial lining cells (SLC) and the reticuloendothelial system (RES) during experimental arthritis. METHODS: Third generation of adenovirus serotype 5 were either injected locally in the knee joint cavity or systemically by intravenous injection into the retro-orbital venous sinus to specifically target SLC and RES, respectively. Transduction of organs was detected by immunohistochemistry of the eGFP transgene. An adenoviral vector containing a short hairpin (sh) RNA directed against TNFR1 (HpTNFR1) was constructed and functionally evaluated in vitro using a nuclear factor-kappaB (NF-kappaB) reporter assay and in vivo in streptococcal cell wall-induced arthritis (SCW) and collagen-induced arthritis (CIA). Adenoviruses were administered before onset of CIA, and the effect of TNFR1 targeting on the clinical development of arthritis, histology, quantitative polymerase chain reaction (qPCR), cytokine analyses and T-cell assays was evaluated. RESULTS: Systemic delivery of Ad5.CMV-eGFP predominantly transduced the RES in liver and spleen. Local delivery transduced the synovium and not the RES in liver, spleen and draining lymph nodes. In vitro, HpTNFR1 reduced the TNFR1 mRNA expression by three-fold resulting in a 70% reduction of TNFalpha-induced NF-kappaB activation. Local treatment with HpTNFR1 markedly reduced mRNA and protein levels of interleukin (IL)-1beta and IL-6 in SLC during SCW arthritis and ameliorated CIA. Systemic targeting of TNFR1 in RES of liver and spleen by systemic delivery of Ad5 virus encoding for a small hairpin RNA against TNFR1 markedly ameliorated CIA and simultaneously reduced the mRNA expression of IL-1beta, IL-6 and Saa1 (75%), in the liver and that of Th1/2/17-specific transcription factors T-bet, GATA-3 and RORgammaT in the spleen. Flow cytometry confirmed that HpTNFR1 reduced the numbers of interferon (IFN)gamma (Th1)-, IL-4 (Th2)- and IL-17 (Th17)-producing cells in spleen. CONCLUSIONS: TNFR1-mediated signaling in both synovial lining cells and the reticuloendothelial system independently played a major pro-inflammatory and immunoregulatory role in the development of experimental arthritis

    IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and communityacquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intratracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was also enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed antiIFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNb induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type I IFN in the innate immune response to MRS

    Development and Function of Immune Cells in an Adolescent Patient with a Deficiency in the Interleukin-10 Receptor

    Get PDF
    OBJECTIVE:: Monogenic defects in the interleukin-10 (IL-10) pathway are extremely rare and cause infantile-onset inflammatory bowel disease (IBD)-like pathology. Understanding how immune responses are dysregulated in monogenic IBD-like diseases can provide valuable insight in “classical” IBD pathogenesis. Here, we studied long-term immune cell development and function in an adolescent IL-10 receptor (IL10RA)-deficient patient who presented in infancy with severe colitis and fistulizing perianal disease and is currently treated with immune suppressants. METHODS:: Biomaterial was collected from the IL10RA-deficient patient, pediatric IBD patients and healthy controls. The frequency and phenotype of immune cells were determined in peripheral blood and intestinal biopsies by flow cytometry and immunohistochemistry. Functional changes in monocyte-derived dendritic cells and T cells were assessed by in vitro activation assays. RESULTS:: The IL10RA-deficient immune system developed normally with respect to numbers and phenotype of circulating immune cells. Despite normal co-stimulatory molecule expression, bacterial lipopolysaccharide-stimulated monocyte-derived dendritic cells from the IL10RA-deficient patient released increased amounts of TNFα compared to healthy controls. Upon T-cell receptor ligation, IL10RA-deficient peripheral blood mononuclear cells released increased amounts of T cell cytokines IFNγ and IL-17 agreeing with high numbers of T-bet and IL-17 cells in intestinal biopsies taken at disease onset. In vitro, the immunosuppressive drug thalidomide used to treat the patient decreased peripheral blood mononuclear cell-derived TNFα production. CONCLUSIONS:: With time and during immunosuppressive treatment the IL10RA- deficient immune system develops relatively normally. Upon activation, IL-10 is crucial for controlling excessive inflammatory cytokine release by dendritic cells and preventing IFNγ and IL-17-mediated T-cell responses
    corecore