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Abstract 

Background: The growing power and ever decreasing cost of RNA sequencing (RNA-
Seq) technologies have resulted in an explosion of RNA-Seq data production. Compar-
ing gene expression values within RNA-Seq datasets is relatively easy for many interdis-
ciplinary biomedical researchers; however, user-friendly software applications increase 
the ability of biologists to efficiently explore available datasets.

Results: Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, 
https:// maris shiny. resea rch. chop. edu/ ROGUE/), a user-friendly R Shiny application 
that allows a biologist to perform differentially expressed gene analysis, gene ontology 
and pathway enrichment analysis, potential biomarker identification, and advanced 
statistical analyses. We use ROGUE to identify potential biomarkers and show unique 
enriched pathways between various immune cells.

Conclusions: User-friendly tools for the analysis of next generation sequencing data, 
such as ROGUE, will allow biologists to efficiently explore their datasets, discover 
expression patterns, and advance their research by allowing them to develop and test 
hypotheses.
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Background
RNA sequencing (RNA-Seq) has become an extremely powerful tool for understanding 
biological pathways and molecular mechanisms. Technological advancements, both wet-
lab and computational, have transformed RNA-Seq into a more accessible tool, giving 
biomedical researchers access to a less biased view of RNA biology and transcriptom-
ics [1–3]. The growing power and ever decreasing cost of RNA-Seq technologies have 
resulted in a marked increase in RNA-Seq dataset production.

The explosion of computational algorithms and pipelines in the last decade has given 
researchers the ability to perform rigorous analyses and explore RNA-Seq data [4–9]. 
Differential expression analysis (DEA) [10–13], which is the most common analysis per-
formed on RNA-Seq, is used to estimate steady-state mRNA levels. There are multiple 
bioinformatics pipelines and packages used to perform DEA [13], including edgeR [10], 
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DESeq[11], and limma-voom [12]. Different combinations of the various algorithms to 
analyze sequence reads and perform DEA can affect the biological conclusions drawn 
from the data [7, 14–16]. Researchers must carefully select the optimal combination 
of tools based on their specific biological questions and the available computational 
resources to perform deep dives and thorough exploration of their RNA-Seq data [7].

DEA is often combined with gene ontology (GO) analysis, pathway analysis, and clus-
tering algorithms to characterize data and elucidate the processes and dynamics involved 
in transcription [17]. These studies give new insights into gene regulatory networks and 
expression. Gene enrichment analysis is a standard GO approach to evaluate upregu-
lated pathways and processes [17–20]. Dimensionality reduction methods, such as mul-
tidimensional scaling (MDS) [10, 21], principal component analysis (PCA) [22, 23], and 
t-distributed stochastic neighbor embedding (t-SNE) [24], are used to identify RNA-Seq 
libraries with similar gene expression profiles. Moreover, while many other sophisticated 
RNA-Seq technologies exist, such as isoform analyses, single-cell RNA-Seq, and spatially 
resolved RNA-Seq methods, bulk RNA-Seq remains a powerful tool that continues to 
shape our understanding of biology.

The availability of RNA sequencing datasets is becoming more common due to 
increased support of open data by academicians and requirements by scientific journals 
and funding agencies to make publication-affiliated datasets publicly available. This has 
gifted the scientific community with an extensive repository of datasets [25–27] derived 
from cell lines, animal models, and patient-derived samples of a wide variety of tis-
sues and diseases. Researchers can explore these datasets of interest to generate or test 
hypotheses. However, even standard DEA and GO analyses often requires a bioinforma-
tician or a computationally savvy biologist.

User-friendly tools for RNA-Seq analyses will allow biomedical scientists with limited 
programming experience to explore these datasets. Here we present RNA-Seq Ontology 
Graphic User Environment (ROGUE), an R Shiny application that allows biologists to 
perform differentially expressed gene analysis, gene ontology and pathway enrichment 
analysis, potential biomarker identification, and advanced statistical analyses. We dem-
onstrate the capability of ROGUE by exploring the basic differences between  CD4+ T 
cells,  CD8+ T cells, and natural killer (NK) cells. Furthermore, we show how ROGUE 
can be used to identify biomarkers and differentially enriched pathways present in simi-
lar immune cells in different diseases.

We propose that ROGUE will allow scientists to explore their datasets and also com-
pare their findings with publicly available datasets, increasing the potential of data-
driven biomedical discovery.

Methods
Workflow

ROGUE is an R Shiny web app with a graphic user interface (GUI) (Fig. 1A) that takes 
expression data as input such as raw read counts, length-normalized counts, expression 
units including fragments per kilobase of transcript per million mapped reads (FPKM), 
reads per kilobase of transcript per million mapped reads (RPKM), and transcripts per 
million (TPM). Users can generate their own RNA-Seq matrix or download publicly 
available RNA-Seq expression data from databases such as gene expression omnibus 
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(GEO) [25], ArrayExpress [26], The genotype tissue expression (GTEx) Project [27], and 
the cancer genome atlas (TCGA) [28]. An online manual is available at https:// maris 
shiny. resea rch. chop. edu/ ROGUE/ Instr uctio ns. pdf. When the input is raw read counts 
or length-normalized counts quantified by packages such as HT-seq [29] or RSEM [8], 
ROGUE generates RPKM tables and can perform DEA using edgeR [10] or DESeq2 [11] 
which are two of the state-of-the-art R packages for DEA analysis [13] and has been 
shown to outperform other methods in various applications [30, 31]. ROGUE also allows 
users to perform more advanced analyses such as biomarker discovery based on gene 
expression, dimensionality reduction, gene set enrichment analysis, and gene ontology 
analysis (Fig. 1B).

Gene expression comparison between samples and groups can be visualized with heat-
maps, bar plots, and boxplots. Users can also use ROGUE to predict possible biomarkers 
by ranking genes with maximized fold change and minimized coefficients of variation in 
gene expression between groups of samples. The Welch’s t-test and the Wilcoxon Rank 
Sum Test can also be used to rank genes by their difference in expression distribution 
between the groups using the Biomarker Discovery Tool.

Gene set enrichment analysis (GSEA) is a computational method that determines 
whether a pre-ranked (i.e., log fold change) gene list shows statistically significant, 
concordant differences between two biological states (e.g.,  CD4+ vs.  CD8+ T cells). 
GSEA between individual samples or groups can be performed using the Fast Gene Set 

Fig. 1 A ROGUE R Shiny app graphic user interface. B ROGUE workflow. ROGUE takes raw read counts, 
normalized counts, or quantified expression values (RPKM, FPKM, TPM) as input. The user can quickly look 
at the clustering of all samples based on the expression values of all genes, perform differential expression 
analysis, and compare genes between samples or groups. ROGUE also includes statistical tools for gene set 
enrichment analysis (GSEA), gene ontology (GO) analysis, biomarker discovery, and dimensionality reduction 
by t-SNE, PCA, or UMAP

https://marisshiny.research.chop.edu/ROGUE/Instructions.pdf
https://marisshiny.research.chop.edu/ROGUE/Instructions.pdf
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Enrichment Analysis (fgsea) R package [32] with data imported from the Molecular Sig-
natures Database (MSigDB) [18, 33]. Alternatively, gene ontology analysis on a list of 
differentially expressed genes can be performed using the Gene Ontology Resource [17, 
34], which is imported into ROGUE. Furthermore, ROGUE can determine differentially 
expressed gene sets using the Gene Ontology Resource. This resource uses the Wilcoxon 
rank sum test to determine if the expression of all genes within a biological process or 
molecular function are statistically different between samples or groups.

Dimensionality reduction methods can be applied to the datasets and visualized using 
2-dimensional and 3-dimensional plots. ROGUE performs PCA using the ‘prcomp’ R 
function, t-SNE using the ‘Rtsne’ R package [35], and Uniform Manifold Approximation 
and Projection (UMAP) method for dimensionality reduction using the ‘uwot’ R package 
[36–38].

The source code for ROGUE is available at https:// github. com/ afarr el/ ROGUE. All 
packages and implementation of the tools are described at this repository.

Datasets

We performed basic analyses on datasets GSE60424 [39], GSE102317 [40], and 
GSE40350 [41] and GSE101470 [42] from the GEO Database to illustrate the basic fea-
tures of ROGUE. Human  CD4+ and   CD8+ T cells,  NK cells, neutrophils, and mono-
cytes from healthy subjects and subjects diagnosed with type 1 diabetes, amyotrophic 
lateral sclerosis, sepsis, and multiple sclerosis were retrieved from GSE60424. RNA-Seq 
data from mouse  CD4+ and  CD8+ T cells and NK cells were retrieved from GSE102317, 
GSE40350, and GSE101470, respectively, for additional analyses. Dataset GSE102317 
contains RNA-Seq data from  CD4+ T cells treated with IL-2 and IL-21 for 0 (control), 
2, 4, and 24 h. Dataset GSE40350 contains  CD8+ T cells treated with IL-2 and IL-15 for 
0 (control), 4, and 24 h. Dataset GSE101470 includes RNA-Seq from mature  CD11b−/
CD27−,  CD11b−/CD27+,  CD11b+/CD27+, and  CD11b+/CD27low NK cells as well as 
Stat5 double knock-in mice with N-terminal mutations in STAT5A and STAT5B that 
prevent STAT5 tetramerization but not dimerization.

Results and discussion
Workflow

We demonstrate the capability of ROGUE by exploring some basic differences between 
 CD4+ T cells,  CD8+ T cells, and natural killer (NK) cells in datasets downloaded from 
the GEO Database. First, we performed DEA using edgeR [10] and compared the expres-
sion of genes of interest between cell types. We then performed GSEA, GO analysis, 
and biomarker discovery based on gene expression to understand functional differ-
ences between the cells and discover possible biomarkers. We used ROGUE to perform 
dimensionality reduction by t-SNE to evaluate if the transcriptome of these cells were 
distinct enough to cluster each sample by cell type. Finally, we searched for differen-
tially expressed gene sets from the GO Resource to evaluate changes in pathways pre 
and post-interferon beta (IFNβ) treatment in immune cells from patients with multiple 
sclerosis (MS).

https://github.com/afarrel/ROGUE
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Basic DEA and GO analysis

To illustrate the basic features of ROGUE, we first performed DEA on  CD4+ T cells 
versus  CD8+ T cells from healthy humans in dataset GSE60424 using edgeR [10] and 
generated a volcano plot showing the differentially expressed genes (Fig.  2A). We 
next performed GSEA using the ‘fgsea’ R package to identify enriched gene signatures 
from the differentially expressed genes between  CD4+ T cells and  CD8+ T cells from 
healthy humans (Fig. 2B, C, Additional file 1). For this illustration, we expect to see 
gene sets with enhanced expression in experiments with stimulated  CD8+ T cells or 
with lower expression in  CD4+ T cells to be enriched in our  CD8+ T cells RNA-Seq 
libraries and lower in our  CD4+ T cell libraries. Interestingly, the most enriched gene 
set for  CD8+ T cells when compared to  CD4+ T cells was a set (GSE45739) of genes 
downregulated in  CD4+ T cells with Nras knockout (KO) mice (Fig. 2B). While  CD4+ 
thymocyte differentiation is not affected in Nras KO mice,  CD8+ thymocyte differ-
entiation has been shown to be significantly reduced [43]. Not surprisingly, the most 
enriched gene set for  CD4+ human T cells, was a set (GSE22886) of genes downregu-
lated in naïve  CD8+ T cells when compared to  CD4+ T cells (Fig.  2C). A heatmap 
was used to display the distinct expression patterns of the differentially expressed 
genes between  CD4+ and  CD8+ T cells from the four healthy donors in the dataset 
(Fig. 2D). Basic GO analysis of genes upregulated in  CD8+ T cells showed enrichment 
in genes related to immune effector process, immune response, and leukocyte activa-
tion (Fig.  2E). We next used the gene ontology comparison tool to evaluate which 
type of T cell expresses more genes related to the T cell receptor (TCR) complex. This 
analysis interestingly revealed that the TCR complex was more enriched in the  CD8+ 
T cells as they expressed more genes at greater RPKM than the  CD4+ T cells (Fig. 2F).

Fig. 2 Basic analysis of  CD4+ T cells versus  CD8+ T cells in healthy individuals. A Volcano plot showing 
differentially expressed genes. B GSEA showing the most enriched gene set when  CD8+ T cells were 
compared to  CD4+ T cells. C GSEA shows that the gene set downregulated in naive  CD8+ T cells when 
compared to naive  CD4+ T cells followed the same pattern in the current dataset. D Heatmap showing top 
differentially expressed genes between  CD8+ and  CD4+ T cells. E Gene ontologies of genes upregulated in 
 CD8+ T cells. F Distribution of expressed genes related to the T cell receptor complex
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Biomarker discovery

Biomarker discovery is essential in biomedical and pharmaceutical research [44–46]. 
Although mRNA is not always translated into protein, one can infer potential biomark-
ers from RNA-Seq data. ROGUE uses an optional combination of the coefficient of 
variation (CV), Wilcoxon-ranked sum test, or t-test for biomarker discovery between 
RNA-Seq library groups. ROGUE was used to identify potential biomarkers between 
 CD4+ T cells,  CD8+ T cells, and NK cells using the Biomarker Discovery tool (Fig. 3A), 
and a subset of these potential biomarkers was compared across the various cell types 
using a heatmap (Fig. 3B). The expression values of the potential biomarkers were used 
to perform t-SNE on all the RNA-Seq libraries. A 2-dimensional plot of the t-SNE results 
shows that RNA-Seq libraries from  CD4+ T cells,  CD8+ T cells, and NK cells from 
healthy controls clustered reasonably well based on the potential biomarkers discovered 
(Fig.  3C). Clusters were not as distinct when t-SNE was performed on T and NK cell 
libraries from both healthy controls and patients in 2 dimensions (Fig. 3D), but the clus-
ters in a 3-dimensional plot generated by t-SNE were more homogeneous (Fig. 3E). We 
evaluated the occurrence of these biomarkers in mouse immune cells and observed that 
only a few of the biomarkers can be used across all datasets in both species (Additional 
file 2: A–B). As expected, CD4 and CTLA4 were identified as potential biomarkers for 
differentiating  CD4+ T cells from  CD8+ T cells and NK cells across both datasets while 
CD8A and CD8B were identified as potential biomarkers for  CD8+ T cells. Gene expres-
sion of the potential human NK cell biomarkers were enriched in mouse NK cells that 
expressed CD27 (Additional file 2: C–D). t-SNE was performed on the mouse datasets 

Fig. 3 Biomarker Discovery among  CD4+ T cells,  CD8+ T cells, and NK cells. A The Biomarker tool shows genes 
with high expression in one cell type and very low expression in the other cell types, suggesting that they 
may be potential biomarkers. B Heatmap showing relative expression values of the potential biomarkers’ 
gene expression for  CD4+ T cell,  CD8+ T cell, and NK cell groups. C 2-dimensional t-SNE plot of  CD4+ T cells, 
 CD8+ T cells, and NK cells from healthy controls using the identified potential biomarkers. D 2-dimensional 
t-SNE plot of  CD4+ T cells,  CD8+ T cells, and NK cells from both healthy and diseased groups using the 
identified potential biomarkers. E 3-dimensional t-SNE plot using the identified potential biomarkers 
emphasizes separation between clusters
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using the gene expressions of the potential biomarkers. The enrichment of the poten-
tial human NK cell biomarkers in mouse  CD27+ NK cells was reflected in the t-SNE 
plot as they formed a distinct cluster from the other NK cells (Additional file 2: E). It is 
worth noting that even though the mouse immune cells cluster well using the biomark-
ers ascertained from the human immune cells, it is possible that the immune cells cluster 
well due to a batch effect instead of gene expression signature (Additional file 2: F).

Comparison of biological pathways after treating multiple sclerosis patients with IFNβ

Dataset GSE60424 contains RNA-Seq data from  CD4+ T cells,  CD8+ T cells, NK 
cells, neutrophils, and monocytes of MS patients before and after IFNβ treatment. 
MS is an inflammatory demyelinating disease of the central nervous system [47]. 
IFNβ treatment is a safe and reasonably effective treatment for MS patients [48–51] 
due to its anti-inflammatory and immunomodulatory effects [52, 53]. While this is 
a widely-used treatment, the precise mechanism is unknown. To identify potential 
hypotheses of the mechanism downstream  of IFNβ treatment, we used ROGUE to 
identify differentially expressed biological processes in  CD4+ T cells,  CD8+ T cells, 
and NK cells isolated from patients pre- or post-treatment with IFNβ.  CD4+ T cells 
showed upregulation of the MDA-5 signaling pathway, among other biological pro-
cesses (Fig.  4A and Additional file 3).  CD8+ T cells and NK cells showed upregula-
tion of 2′–5′-oligoadenylate synthetase activity (Fig. 4B, C). Given that the MDA-5 
signaling pathway and 2′–5′-oligoadenylate synthetase activity are both involved in 
interferon signaling in innate immunity [54–57], and both pathways were upregu-
lated in  CD4+ T cells,  CD8+ T cells, and NK cells (Additional file  4: A), we exam-
ined the differentially expressed biological processes in neutrophils and monocytes. 
As expected, we observed an increase in pathways related to interferon production, 
protein secretion, as well as positive regulation of MDA-5 pathway (Fig. 4D and Addi-
tional file 4: B). This led us to examine the expression of genes related to MDA-5 and 
2′–5′-oligoadenylate synthetase in all five cell types pre- and post-treatment, as this 
might give insights into the underlying mechanism. Furthermore, there is at least one 
report that polymorphisms in MDA-5 (IFIH1) are associated with MS [58], although 
another report states that this association does not exist in a specific French popula-
tion [59]. Nevertheless, the MDA-5 signaling pathway and 2′–5′-oligoadenylate syn-
thetase activity were upregulated in all five cell types (Fig.  4E). We then confirmed 
that both MDA-5 and RIG-I (DDX58) are upregulated in MS patients’ immune cells 
following treatment with IFNβ, as they are involved in the induction of IRF7 expres-
sion and constitutively-expressed IRF3 [57, 60] (Additional file 4: C). A well-defined 
mechanism of interferon-stimulated gene (ISG) expression is that IRF3 and IRF7 reg-
ulate the expression of type 1 interferons, which then induce ISGs through JAK-STAT 
signaling, including OAS1A and OAS1B [56]. However, IFNα and IFNβ mRNAs are 
not expressed, which suggests that administered IFNβ rather than endogenously pro-
duced IFNβ induces ISGs through the JAK-STAT pathway. This model is consistent 
with our data, as ISGs were upregulated in all five cell types after IFNβ-treatment 
with significantly greater expression of MDA-5, RIG-1 and ISGs observed in neutro-
phils (Fig. 4E and Additional file 4: C). Given that 2′–5′-oligoadenylate synthetase can 
induce apoptosis in tumors [61], perhaps this alternative role of 2′–5′-oligoadenylate 
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synthetase also occurs in immune cells, giving it a pro-inflammatory role as well as 
an anti-inflammatory role by promoting apoptosis and regulating cell growth and 
proliferation [57]. Furthermore, the disproportionate upregulation of genes with pro-
apoptotic and antiproliferative roles in neutrophils supports Hasselbalch and Søn-
dergaard’s report of a higher neutrophil-to-lymphocyte ratio, which is a marker of 
systemic inflammation, before treatment with IFNβ when compared to controls by 
[62]. Moreover, Pierson et al. demonstrated that depleting neutrophils in the MS ani-
mal model reduces the progression of the disease and Naegel et al. showed evidence 
that the increase in neutrophils in relapsing–remitting MS is likely due to decreased 
apoptosis [63, 64]. If this potential pro-apoptotic anti-inflammatory role of 2′–5′-oli-
goadenylate synthetase exists, it could be the mechanism by which IFNβ treatment 
positively impacts MS patients. In addition to 2′–5′-oligoadenylate synthetase 
activity, IFNβ may be involved in another pathway that explains the MDA-5/RIG-1 
upregulation. Shimoni et al. suggested that IFNβ can bind cell surface receptors and 
promote the induction of RIG-1 as part of a positive feedback loop [65]. Wang et al. 
further showed that RIG-1 and MDA5 signaling induces tumor necrosis factor (TNF) 
in macrophages [66], and TNF has been shown to have anti-inflammatory effects in 
MS [67]. The anti-inflammatory effects of TNF coupled with the pro-apoptotic role of 

Fig. 4 Using differentially expressed pathways to generate and/or explore hypotheses. A Distribution of 
MDA-5 signaling pathway in untreated (red) and IFNβ-treated (blue)  CD4+ T cells showing an upregulation 
of genes related to MDA-5 signaling. B, C Distribution of 2′–5′-oligoadenylate synthetase activity in 
untreated (red) and IFNβ-treated (blue)  CD8+ T cells (B) and NK cells (C) showing an upregulation of genes 
2′–5′-oligoadenylate synthetase activity. D Boxplots showing pathways that may be differentially regulated 
in neutrophils with multiple genes consistently upregulated or downregulated post-IFNβ treatment. E 
Bar plot showing upregulated MDA-5 (IFIH1), RIG-I (DDX58), and genes related to 2′–5′-oligoadenylate 
synthetase in IFNβ-treated monocytes, neutrophils, CD4 + T cells, CD8 + T cells, and NK cells
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2′–5′-oligoadenylate synthetase may be part of the downstream mechanism contrib-
uting to the positive response induced by IFNβ in MS patients.

Conclusion
ROGUE is designed to be a user-friendly R Shiny application that allows users to perform 
basic tasks with available RNA-Seq data such as differentially expressed gene analysis and 
gene ontology analysis. While other freely available web tools and portals have been devel-
oped to allow researchers to address discrete questions based on molecular and genomic 
datasets without the need for strong computational skills [68, 69], ROGUE allows deeper 
dataset exploration, allowing users to compare gene expression and gene set enrichments 
between samples and groups. For example, users can explore similarities of expression pro-
files using the dimensionality reduction methods such as t-SNE, PCA, UMAP, and MDS 
and search for potential biomarkers between groups of RNA-Seq libraries, to our knowl-
edge making it the only currently available tool to allow this range of dataset analysis (Addi-
tional file 5). Furthermore, users have the option to download their session and continue 
their analysis at a later time. Users can also restore a session if the web application gets 
disconnected from the server. In addition to the case study presented here, we successfully 
tested ROGUE on ten diverse human and mouse case studies downloaded from Expres-
sion Atlas to illustrate the various applications and robustness (Additional file 6). It is worth 
noting that ROGUE is an R Shiny application thus allowing the inclusion of many statistical 
and graphical functions by the R community as well as the ability to be implemented on 
both local and web servers; however, like all R Shiny applications there are limitations. One 
of these limitations is that R Shiny applications that are implemented on web servers may 
perform slowly and sometimes disconnect from the server resulting in a subsequent crash 
when processing large datasets or performing computationally intensive functions. For 
this reason, we recommend downloading the local version of ROGUE from https:// github. 
com/ afarr el/ ROGUE when processing large datasets. Here, we show that a user can explore 
RNA-Seq data obtained from public databases and use ROGUE to analyze that data to gen-
erate or support new or existing hypotheses. ROGUE provides non-R programmers access 
to many statistical and graphical R packages for RNA-Seq analyses through a GUI so they 
can analyze their data and create figures. Ideally, tools like ROGUE will allow more biomed-
ical researchers to take advantage of genomic data available and help expedite needed bioin-
formatics analyses. ROGUE is available at https:// maris shiny. resea rch. chop. edu/ ROGUE/.

Availability and requirements
Project Name: ROGUE.
Project Home Page: https:// maris shiny. resea rch. chop. edu/ ROGUE/.
Github: https://github.com/afarrel/ROGUE.
Operating System: Platform independent.
Programming language: R.
Other requirements: R environment and included packages. Tested on R version 3.6.
Any restrictions to use by non-academics: none.

https://github.com/afarrel/ROGUE
https://github.com/afarrel/ROGUE
https://marisshiny.research.chop.edu/ROGUE/
https://marisshiny.research.chop.edu/ROGUE/
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DEA  Differential expression analysis
FGSEA  Fast gene set enrichment analysis
FPKM  Fragments per kilobase of transcript per million mapped reads
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GTEx  The genotype tissue expression
GUI  Graphic user interface
IFNα  Interferon alpha
IFNβ  Interferon beta
ISG  Interferon-stimulated gene
MDS  Multidimensional scaling
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t-SNE  T-distributed stochastic neighbor embedding
UMAP  Uniform manifold approximation and projection
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