44 research outputs found

    Atomic Oxygen Textured Polymers

    Get PDF
    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction

    Phosphoinositide-dependent protein kinase-1 (PDK1)-independent activation of the protein kinase C substrate, protein kinase D

    Get PDF
    Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction

    Protein kinase D enzymes are dispensable for proliferation, survival and antigen receptor-regulated NFκB activity in vertebrate B-cells

    Get PDF
    To investigate the importance of protein kinase D (PKD) enzymes we generated a PKD-null DT40 B-lymphocyte cell line. Previously we have shown that PKDs have an essential role in regulating class II histone deacetylases in DT40 B-cells [Matthews, S.A., Liu, P., Spitaler, M., Olson, E.N., McKinsey, T.A., Cantrell, D.A. and Scharenberg, A.M. (2006) Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol. Cell Biol. 26, 1569–1577]. We now show that PKDs are also required to regulate HSP27 phosphorylation in DT40 B-cells. However, in contrast to previous observations in other cell types, PKD enzymes do not regulate basic cellular processes such as proliferation or survival responses, nor NFκB transcriptional activity downstream of the B cell antigen receptor. Thus, PKDs have a selective role in DT40 B-cell biology

    The structure of IL2 bound to the three chains of the IL2 receptor and how signaling occurs

    Get PDF
    The interleukin-2 molecule and receptor were the first of the interleukins to be discovered and characterized at the molecular level. Now after 20 years of effort, two groups have succeeded in determining the structure of IL2 bound to the external domains of the three receptor chains in a quaternary complex. What do we know now that we did not know before this structural information was available, and how do these new data help us to develop new therapies

    Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD

    Microbial mats: an ecological niche for fungi

    Get PDF
    Fungi were documented in tropical hypersaline microbial mats and their role in the degradation of complex carbohydrates (exopolymeric substance – EPS) was explored. Fungal diversity is higher during the wet season with Acremonium, Aspergillus, Cladosporium, and Penicillium among the more common genera. Diversity is also higher in the oxic layer and in young and transient mats. Enrichments with xanthan (a model EPS) show that without antibiotics (full community) degradation is faster than enrichments with antibacterial (fungal community) and antifungal (bacterial community) agents, suggesting that degradation is performed by a consortium of organisms (bacteria and fungi). The combined evidence from all experiments indicates that bacteria carried out approximately two-third of the xanthan degradation. The pattern of degradation is similar between seasons and layers but degradation is faster in enrichments from the wet season. The research suggests that fungi thrive in these hypersaline consortia and may participate in the carbon cycle through the degradation of complex carbohydrates

    Spatial and temporal regulation of protein kinase D (PKD)

    No full text
    Protein kinase D (PKD; also known as PKCµ) is a serine/threonine kinase activated by diacylglycerol signalling pathways in a variety of cells. PKD has been described previously as Golgi-localized, but herein we show that it is present within the cytosol of quiescent B cells and mast cells and moves rapidly to the plasma membrane after antigen receptor triggering. The membrane redistribution of PKD requires the diacylglycerol-binding domain of the enzyme, but is independent of its catalytic activity and does not require the integrity of the pleckstrin homology domain. Antigen receptor signalling initiates in glycosphingolipid-enriched microdomains, but membrane-associated PKD does not co-localize with these specialized structures. Membrane targeting of PKD is transient, the enzyme returns to the cytosol within 10 min of antigen receptor engagement. Strikingly, the membrane-recycled PKD remains active in the cytosol for several hours. The present work thus characterizes a sustained antigen receptor-induced signal transduction pathway and establishes PKD as a serine kinase that temporally and spatially disseminates antigen receptor signals away from the plasma membrane into the cytosol
    corecore