7 research outputs found

    Metal-Ion-Binding Oligonucleotides: High-Affinity Probes for Nucleic Acid Sequences

    Get PDF
    Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed to bind most efficiently to their unmodified complementary sequences in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes in the presence of Cu2+ without losing the selectivity.Siirretty Doriast

    Metal Ion Chelates as Surrogates of Nucleobases for the Recognition of Nucleic Acid Sequences: The Pd2+ Complex of 2,6-Bis(3,5-dimethylpyrazol-1-yl)purine Riboside

    Get PDF
    A 2,6-bis(3,5-dimethylpyrazol-1-yl)purine ribonucleoside has been prepared and incorporated as a conventionally protected phosphoramidite into a 9-mer 2â€Č-O-methyl oligoribonucleotide. According to 1H NMR spectroscopic studies, this nucleoside forms with Pd2+ and uridine a ternary complex that is stable at a micromolar concentration range. CD spectroscopic studies on oligonucleotide hybridization, in turn, suggest that the Pd2+ chelate of this artificial nucleoside, when incorporated in a 2â€Č-O-methyl-RNA oligomer, is able to recognize thymine within an otherwise complementary DNA strand. The duplex containing thymidine opposite to the artificial nucleoside turned out to be somewhat more resistant to heating than its counterpart containing 2â€Č-deoxycytidine in place of thymidine, but only in the presence of Pd2+. According to UV-melting measurements, replacement of 2â€Č-O-methyladenosine with the artificial nucleoside markedly enhances hybridization with a DNA target, irrespective of the identity of the opposite base and the presence of Pd2+. With the thymidine containing DNA target, the Tm value is 2–4°C higher than with targets containing any other nucleoside opposite to the artificial nucleoside, but the dependence on Pd2+ is much less clear than in the case of the CD studies

    Metal-ion-binding oligonucleotides: high-affinity probes for nucleic acid sequences

    Get PDF
    Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed&nbsp; to bind most efficiently&nbsp; to their unmodified complementary sequences&nbsp; in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes&nbsp; in the presence of Cu2+ without losing the selectivity. &nbsp;Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed&nbsp; to bind most efficiently&nbsp; to their unmodified complementary sequences&nbsp; in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes&nbsp; in the presence of Cu2+ without losing the selectivity. Key words: non-coding RNA, microRNA, modified oligonucleotide, hybridization, metal-ion-mediated base pair&nbsp;</p

    Metal-Ion-Mediated Base Pairing between Natural Nucleobases and Bidentate 3,5-Dimethylpyrazolyl-Substituted Purine Ligands

    No full text
    The potential of three modified purine bases, namely, 6-(3,5-dimethylpyrazol-1-yl)­purine, 2-(3,5-dimethylpyrazol-1-yl)­hypoxanthine, and 2-(3,5-dimethylpyrazol-1-yl)­adenine, for metal-ion-mediated base pairing within an oligonucleotide environment has been investigated. The respective modified nucleosides were incorporated in the middle of 9-mer 2â€Č-<i>O</i>-methyl oligonucleotides and the hybridization of these modified oligonucleotides with their unmodified counterparts studied by UV and CD spectrometry in the absence and presence of Cu<sup>2+</sup> or Zn<sup>2+</sup>. All of the modified oligonucleotides formed more stable duplexes in the presence of divalent metal ions than in the absence thereof, but with different preferences for the complementary oligonucleotide. The oligonucleotide incorporating 2-(3,5-dimethylpyrazol-1-yl)­hypoxanthine readily accepted any of the natural nucleobases opposite to this modified base regardless of whether Cu<sup>2+</sup> or Zn<sup>2+</sup> was used as the bridging metal ion. The other two oligonucleotides, on the other hand, were much more discriminating, exhibiting markedly elevated <i>T</i><sub>m</sub> values only in the presence of Cu<sup>2+</sup> and only when certain natural nucleobases were paired with the modified one. The origin of the selectivity (or promiscuity) of the metal-ion-mediated base pairing is discussed in terms of the ability of the modified nucleobases, as well as their natural counterparts, to serve as anionic ligands
    corecore