131 research outputs found

    Severity of acute hepatitis and its outcome in patients with dengue fever in a tertiary care hospital Karachi, Pakistan (South Asia)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver injury due to dengue viral infection is not uncommon. Acute liver injury is a severe complicating factor in dengue, predisposing to life-threatening hemorrhage, Disseminated Intravascular Coagulation (DIC) and encephalopathy. Therefore we sought to determine the frequency of hepatitis in dengue infection and to compare the outcome (length of stay, in hospital mortality, complications) between patients of Dengue who have mild/moderate (ALT 23-300 IU/L) v/s severe acute hepatitis (ALT > 300 IU/L).</p> <p>Methods</p> <p>A Cohort study of inpatients with dengue viral infection done at Aga Khan University Hospital Karachi. All patients (≥ 14 yrs age) admitted with diagnosis of Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS) were included. Chi square test was used to compare categorical variables and fischer exact test where applicable. Survival analysis (Cox regression and log rank) for primary outcome was done. Student t test was used to compare continuous variables. A p value of less than or equal to 0.05 was taken as significant.</p> <p>Results</p> <p>Six hundred and ninety nine patients were enrolled, including 87% (605) patients with DF and 13% (94) patients with DHF or DSS. Liver functions tests showed median ALT of 88.50 IU/L; IQR 43.25-188 IU/L, median AST of 174 IU/L; IQR 87-371.5 IU/L and median T.Bil of 0.8 mg/dl; IQR 0.6-1.3 mg/dl. Seventy one percent (496) had mild to moderate hepatitis and 15% (103) had severe hepatitis. Mean length of stay (LOS) in patients with mild/moderate hepatitis was 3.63 days v.s 4.3 days in those with severe hepatitis (P value 0.002). Overall mortality was 33.3% (n = 6) in mild/moderate hepatitis vs 66.7% (n = 12) in severe hepatitis group (p value < 0.001). Cox regression analysis also showed significantly higher mortality in severe hepatitis group (H.R (4.91; 95% CI 1.74-13.87 and P value 0.003) and in DHF/DSS (5.43; CI 1.86-15.84 and P value 0.002). There was a significant difference for the complications like Bleeding (P value < 0.001), Acute Renal failure (ARF) (P value 0.002), Acalculus cholecystitis (P value 0.04) and encephalopathy (P value 0.02) in mild/moderate and Severe hepatitis groups respectively.</p> <p>Conclusion</p> <p>Severe hepatitis (SGPT>300IU) in Dengue is associated with prolonged LOS, mortality, bleeding and RF.</p

    Galectin-3 in Cardiac Remodeling and Heart Failure

    Get PDF
    Galectin-3 is a member of the galectin family, which consists of animal lectins that bind β-galactosides. Recently, a role for galectin-3 in the pathophysiology of heart failure has been suggested. It was observed that galectin-3 is specifically upregulated in decompensated heart failure compared with compensated heart failure in animal models of heart failure. This has been associated with activation of fibroblasts and macrophages, which are a hallmark of cardiac remodeling. Therefore, galectin-3 may be a culprit biomarker in heart failure. Initial clinical observations indicate that galectin-3 may be a useful biomarker for decompensated heart failure, with incremental value over well-used “pressure-dependent” biomarkers, such as B-type natriuretic peptide. Future studies should focus on galectin-3 biology to better address the usefulness of galectin-3 as a biomarker and probe the usefulness of anti-galectin-3 therapy in treating heart failure

    Regulation of inflammation in Japanese encephalitis

    Get PDF
    Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections, exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be important forces driving JE pathogenesis

    Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets

    Get PDF
    The clinical phenotype of human dilated cardiomyopathy (DCM) encompasses a broad spectrum of etiologically distinct disorders. As targeting of etiology-related pathogenic pathways may be more efficient than current standard heart failure treatment, we obtained the genomic expression profile of a DCM subtype characterized by cardiac inflammation to identify possible new therapeutic targets in humans. In this inflammatory cardiomyopathy (DCMi), a distinctive cardiac expression pattern not described in any previous study of cardiac disorders was observed. Two significantly altered gene networks of particular interest and possible interdependence centered around the cysteine-rich angiogenic inducer 61 (CYR61) and adiponectin (APN) gene. CYR61 overexpression, as in human DCMi hearts in situ, was similarly induced by inflammatory cytokines in vascular endothelial cells in vitro. APN was strongly downregulated in DCMi hearts and completely abolished cytokine-dependent CYR61 induction in vitro. Dysbalance between the CYR61 and APN networks may play a pathogenic role in DCMi and contain novel therapeutic targets. Multiple immune cell-associated genes were also deregulated (e.g., chemokine ligand 14, interleukin-17D, nuclear factors of activated T cells). In contrast to previous investigations in patients with advanced or end-stage DCM where etiology-related pathomechanisms are overwhelmed by unspecific processes, the deregulations detected in this study occurred at a far less severe and most probably fully reversible disease stage. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00109-006-0122-9 and is accessible for authorized users

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Broadband Magneto-Electric Dipole Antenna using Circular Quadrants with SIW Technique

    No full text
    603-608Ku (12-18 GHz) band is prominently utilized for application related to satellite communications. In the proposed work, the essential characteristics of Magneto electric dipole antenna has fruitfully been designed by printing L shaped probe feed and four circular quadrants embedding shorted metallic vias. Wideband impedance bandwidth of 2.53 GHz (12.40-14.93 GHz) is offered by the antenna, which is around 19.26 % at center frequency. Moreover, it exhibits good gain and radiation characteristics. An extensive simulation and optimization have been performed using CST-MW-2019. The fabricated antenna has been verified with VNA and anechoic chambe
    corecore