18 research outputs found

    Genetic causes of transitions from sexual reproduction to asexuality in plants and animals.

    No full text
    The persistence of sexual reproduction in the face of competition from asexual invaders is more likely if asexual lineages are produced infrequently or have low fitness. The generation rate and success of new asexual lineages will be influenced by the proximate mechanisms underlying transitions to asexuality. As such, characterization of these mechanisms can help explain the distribution of reproductive modes among natural populations. Here, we synthesize the literature addressing proximate causes of transitions from sexual to asexual reproduction in plants and animals. In cyclical and facultatively asexual taxa, individual mutations can cause obligate asexuality. The evolution of asexuality in obligately sexual groups is more complex, requiring the simultaneous acquisition of two traits generally controlled by different genetic factors: unreduced gamete formation and spontaneous development of unfertilized gametes. At least three 'pre-adaptations' could favour transitions to obligate asexuality in obligate sexuals. First, linkage among loci affecting separate key components of asexuality facilitates its spread, with evidence for these linkage blocks in plants. Second, asexuality should evolve more readily in haplodiploids; support for this hypothesis comes from two examples where a single locus causes transitions to asexuality. Third, standing genetic variation for the production of unreduced gametes could facilitate transitions to asexuality, but whether the ability to produce unreduced gametes contributes to the evolution of obligate asexuality remains unclear. We close by reviewing the associations between asexuality, hybridization and polyploidy, and argue that current data suggest that hybridization is more likely to play a causal role in transitions to asexuality than polyploidy

    Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae)

    No full text
    • Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels (diploid and triploid). Apomixis is characterized by three components: unreduced embryo-sac formation (apomeiosis), fertilization-independent embryogenesis (parthenogenesis), and functional endosperm formation (pseudogamy or autonomous endosperm formation). Understanding the variation in these traits within and between species has been hindered by the laborious histological analyses required to analyze large numbers of samples. • Methods: To quantify variability for the different components of apomictic seed development, we developed a high-throughput flow cytometric seed screen technique to measure embryo:endosperm ploidy in over 22000 single seeds derived from 71 accessions of diploid and triploid Boechera. • Key results: Three interrelated features were identified within and among Boechera species: (1) variation for most traits associated with apomictic seed formation, (2) three levels of apomeiosis expression (low, high, obligate), and (3) correlations between apomeiosis and parthenogenesis/pseudogamy. • Conclusions: The data presented here provide a framework for choosing specific genotypes for correlations with large "omics" data sets being collected for Boechera to study population structure, gene flow, and evolution of specific traits. We hypothesize that low levels of apomeiosis represent an ancestral condition of Boechera, whereas high apomeiosis levels may have been induced by global gene regulatory changes associated with hybridization

    Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes

    No full text
    Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes – the submetacentric Het' and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction

    Is the aneuploid chromosome in an apomictic Boechera holboellii a genuine B chromosome?

    No full text
    The Boechera holboellii complex comprises B. holboellii and B. drummondii, both of which can reproduce through sex or apomixis. Sexuality is associated with diploidy, whereas apomictic individuals can either be diploid, aneuploid or triploid. Aneuploid individuals are found in geographically and genetically distinct populations and contain a single extra chromosome. It is unknown whether the supernumerary chromosomes are shared by common descent (single origin) or have originated via introgressive hybridizations associated with the repeated transition from diploidy to triploidy. Diploid plants containing the extra chromosome(s) reproduce apomictically, suggesting that the supernumerary elements are associated with apomixis. In this study we compared flow cytometry data, chromosome morphology, and DNA sequences of sexual diploid and apomictic aneuploids in order to establish whether the extra chromosome fits the classical concept of a B chromosome. Karyotype analyses revealed that the supernumerary chromosome in the metaphase complement is heterochromatic and often smaller than the A chromosomes, and differs in length between apomictic plants from different populations. DNA sequence analyses furthermore demonstrated elevated levels of non-synonymous substitutions in one of the alleles, likely that on the aneuploid chromosome. Although the extra chromosome in apomictic Boechera does not go through normal reductional meiosis, in which it may get eliminated or accumulated by a B-chromosome-specific process, its variable size and heterochromatic nature does meet the remaining criteria for a genuine B chromosome in other species. Its prevalence and conserved genetic composition nonetheless implies that this chromosome, if truly a B, may be atypical with respect to its influence on its carriers. Copyright (C) 2004 S. Karger AG, Basel

    Biogeographic distribution of polyploidy and B chromosomes in the apomictic Boechera holboellii complex

    No full text
    The Boechera holboellii complex comprises B. holboellii and B. drummondii, both of which can reproduce through sex or apomixis. Sexuality is associated with diploid individuals, whereas apomictic individuals are diploid or triploid and may additionally have B chromosomes. Using flow cytometry and karyotype analysis, we have shown that B chromosomes (a) occur in both diploid and triploid apomictic B. holboellii, (b) may occur in triploid B. drummondii, and (c) are dispensable for the plant. Both diploid and triploid karyotypes are found in multiple chloroplast haplotypes of both species, suggesting that triploid forms have originated multiple times during the evolution of this complex. B chromosome carriers are found in geographically and genetically distinct popu-lations, but it is unknown whether the extra chromosomes are shared by common descent (single origin) or have originated via introgressive hybridization and repeated transitions from diploidy to triploidy. Diploid plants containing the Bs reproduce apomictically, suggesting that the supernumerary elements are associated with apomixis. Finally, our analyses of pollen size and viability suggest that irregular chromosome segregation in some triploid lineages may lead to the generation of diploid individuals which carry the B chromosomes
    corecore