223 research outputs found

    Modification of the Alfvén wave spectrum by pellet injection

    Get PDF
    International audienceAlfvén eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfvén waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfvén continuum and discrete eigenmode spectrum. The frequencies of Alfvén eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfvén eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MHD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfvén eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfvén eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4cm is estimated to be n * = 6.8×10 22 m −3 at the TAE location (r/a ≈ 0.75). The frequency sweeping of an Alfvén eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is τ h = 18 ± 4 ms for inboard pellet injection, and τ h = 26 ± 2 ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfvén eigenmode (EAE), the initial ion density at the EAE location (r/a ≈ 0.9) can be estimated to be n * = 4.8 × 10 22 m −3. Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection

    Electron cyclotron heating can drastically alter reversed shear Alfven eigenmode activity in DIII-D through finite pressure effects

    Get PDF
    A recent DIII-D experiment investigating the impact of electron cyclotron heating (ECH) on neutral beam driven reversed shear Alfvén eigenmode (RSAE) activity is presented. The experiment includes variations of ECH injection location and timing, current ramp rate, beam injection geometry (on/off-axis), and neutral beam power. Essentially all variations carried out in this experiment were observed to change the impact of ECH on AE activity significantly. In some cases, RSAEs were observed to be enhanced with ECH near the off-axis minimum in magnetic safety factor (qmin), in contrast to the original DIII-D experiments where the modes were absent when ECH was deposited near qmin. It is found that during intervals when the geodesic acoustic mode (GAM) frequency at qmin is elevated and the calculated RSAE minimum frequency, including contributions from thermal plasma gradients, is very near or above the nominal TAE frequency (fTAE), RSAE activity is not observed or RSAEs with a much reduced frequency sweep range are found. This condition is primarily brought about by ECH modification of the local electron temperature (Te) which can raise both the local Te at qmin as well as its gradient. A q-evolution model that incorporates this reduction in RSAE frequency sweep range is in agreement with the observed spectra and appears to capture the relative balance of TAE or RSAE-like modes throughout the current ramp phase of over 38 DIII-D discharges. Detailed ideal MHD calculations using the NOVA code show both modification of plasma pressure and pressure gradient at qmin play an important role in modifying the RSAE activity. Analysis of the ECH injection near the qmin case where no frequency sweeping RSAEs are observed shows the typical RSAE is no longer an eigenmode of the system. What remains is an eigenmode with poloidal harmonic content reminiscent of the standard RSAE, but absent of the typical frequency sweeping behavior. The remaining eigenmode is also often strongly coupled to gap TAEs. Analysis with the non-perturbative gyro fluid code TAEFL confirms this change in RSAE activity and also shows a large drop in the resultant mode growth rates.RCUK Energy Programme EP/I50104

    Fusion product losses due to fishbone instabilities in deuterium JET plasmas

    Get PDF
    During development of a high-performance hybrid scenario for future deuteriumtritium experiments on the Joint European Torus, an increased level of fast ion losses in the MeV energy range was observed during the instability of high-frequency n=1 fishbones. The fishbones are excited during deuterium neutral beam injection combined with ion cyclotron heating. The frequency range of the fishbones, 10 – 25 kHz, indicates that they are driven by a resonant interaction with the NBI-produced D beam ions in the energy range ≤120 keV. The fast particle losses in a much higher energy range are measured with a fast ion loss detector, and the data show an expulsion of deuterium plasma fusion products, 1 MeV tritons and 3 MeV protons, during the fishbone bursts. An MHD mode analysis with the MISHKA code combined with the nonlinear wave-particle interaction code HAGIS shows that the loss of toroidal symmetry caused by the n=1 fishbones affects strongly the confinement of nonresonant high energy fusion-born tritons and protons by perturbing their orbits and expelling them. This modelling is in a good agreement with the experimental data.EURATOM 633053RCUK Energy Programme EP/P012450/

    Spectra of magnetic perturbations triggered by pellets in JET plasmas

    Get PDF
    Aiming at investigating edge localised mode (ELM) pacing for future application on ITER, experiments have been conducted on JET injecting pellets in different plasma configurations, including high confinement regimes with type-I and type-III ELMs, low confinement regimes and Ohmically heated plasmas. The magnetic perturbations spectra and the toroidal mode number, n, of triggered events are compared with those of spontaneous ELMs using a wavelet analysis to provide good time resolution of short-lived coherent modes. It is found that—in all these configurations—triggered events have a coherent mode structure, indicating that pellets can trigger an MHD event basically in every background plasma. Two components have been found in the magnetic perturbations induced by pellets, with distinct frequencies and toroidal mode numbers. In high confinement regimes triggered events have similarities with spontaneous ELMs: both are seen to start from low toroidal mode numbers, then the maximum measured n increases up to about 10 within 0.3 ms before the ELM burst

    Comprehensive evaluation of the linear stability of Alfvén eigenmodes driven by alpha particles in an ITER baseline scenario

    Get PDF
    The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have and are not affected by radiative damping

    Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios

    Get PDF
    A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfv�n eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas

    The effects of electron cyclotron heating and current drive on toroidal Alfven eigenmodes in tokamak plasmas

    Get PDF
    Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in Te caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in Te causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.EURATOM 633053RCUK Energy Programme P012450/
    corecore