94 research outputs found

    Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles nili </it>is a major vector of malaria in the humid savannas and forested areas of sub-Saharan Africa. Understanding the population genetic structure and evolutionary dynamics of this species is important for the development of an adequate and targeted malaria control strategy in Africa. Chromosomal inversions and microsatellite markers are commonly used for studying the population structure of malaria mosquitoes. Physical mapping of these markers onto the chromosomes further improves the toolbox, and allows inference on the demographic and evolutionary history of the target species.</p> <p>Results</p> <p>Availability of polytene chromosomes allowed us to develop a map of microsatellite markers and to study polymorphism of chromosomal inversions. Nine microsatellite markers were mapped to unique locations on all five chromosomal arms of <it>An. nili </it>using fluorescent <it>in situ </it>hybridization (FISH). Probes were obtained from 300-483 bp-long inserts of plasmid clones and from 506-559 bp-long fragments amplified with primers designed using the <it>An. nili </it>genome assembly generated on an Illumina platform. Two additional loci were assigned to specific chromosome arms of <it>An. nili </it>based on <it>in silico </it>sequence similarity and chromosome synteny with <it>Anopheles gambiae</it>. Three microsatellites were mapped inside or in the vicinity of the polymorphic chromosomal inversions <it>2Rb </it>and <it>2Rc</it>. A statistically significant departure from Hardy-Weinberg equilibrium, due to a deficit in heterozygotes at the <it>2Rb </it>inversion, and highly significant linkage disequilibrium between the two inversions, were detected in natural <it>An. nili </it>populations collected from Burkina Faso.</p> <p>Conclusions</p> <p>Our study demonstrated that next-generation sequencing can be used to improve FISH for microsatellite mapping in species with no reference genome sequence. Physical mapping of microsatellite markers in <it>An. nili </it>showed that their cytological locations spanned the entire five-arm complement, allowing genome-wide inferences. The knowledge about polymorphic inversions and chromosomal locations of microsatellite markers has been useful for explaining differences in genetic variability across loci and significant differentiation observed among natural populations of <it>An. nili</it>.</p

    Genome mapping and characterization of the Anopheles gambiae heterochromatin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector <it>Anopheles gambiae </it>has not been mapped and characterized.</p> <p>Results</p> <p>To determine the extent of heterochromatin within the <it>An. gambiae </it>genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the <it>An. gambiae </it>chromosomes with antibodies against <it>Drosophila melanogaster </it>heterochromatin protein 1 (HP1) and the nuclear envelope protein lamin Dm<sub>0 </sub>identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin.</p> <p>Conclusions</p> <p>Our results demonstrate that <it>Anopheles </it>polytene chromosomes and whole-genome shotgun assembly render the mapping and characterization of a significant part of heterochromatic scaffolds a possibility. These results reveal the strong association between characteristics of the genome features and morphological types of chromatin. Initial analysis of the <it>An. gambiae </it>heterochromatin provides a framework for its functional characterization and comparative genomic analyses with other organisms.</p

    Update of the Anopheles gambiae PEST genome assembly

    Get PDF
    BACKGROUND: The genome of Anopheles gambiae, the major vector of malaria, was sequenced and assembled in 2002. This initial genome assembly and analysis made available to the scientific community was complicated by the presence of assembly issues, such as scaffolds with no chromosomal location, no sequence data for the Y chromosome, haplotype polymorphisms resulting in two different genome assemblies in limited regions and contaminating bacterial DNA. RESULTS: Polytene chromosome in situ hybridization with cDNA clones was used to place 15 unmapped scaffolds (sizes totaling 5.34 Mbp) in the pericentromeric regions of the chromosomes and oriented a further 9 scaffolds. Additional analysis by in situ hybridization of bacterial artificial chromosome (BAC) clones placed 1.32 Mbp (5 scaffolds) in the physical gaps between scaffolds on euchromatic parts of the chromosomes. The Y chromosome sequence information (0.18 Mbp) remains highly incomplete and fragmented among 55 short scaffolds. Analysis of BAC end sequences showed that 22 inter-scaffold gaps were spanned by BAC clones. Unmapped scaffolds were also aligned to the chromosome assemblies in silico, identifying regions totaling 8.18 Mbp (144 scaffolds) that are probably represented in the genome project by two alternative assemblies. An additional 3.53 Mbp of alternative assembly was identified within mapped scaffolds. Scaffolds comprising 1.97 Mbp (679 small scaffolds) were identified as probably derived from contaminating bacterial DNA. In total, about 33% of previously unmapped sequences were placed on the chromosomes. CONCLUSION: This study has used new approaches to improve the physical map and assembly of the A. gambiae genome

    A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi

    Get PDF
    Background Anopheles beklemishevi is a member of the Maculipennis group of malaria mosquitoes that has the most northern distribution among other members of the group. Although a cytogenetic map for the larval salivary gland chromosomes of this species has been developed, a high-quality standard cytogenetic photomap that enables genomics and population genetics studies of this mosquito at the adult stage is still lacking. Methods In this study, a cytogenetic map for the polytene chromosomes of An. beklemishevi from ovarian nurse cells was developed using high-resolution digital imaging from field collected mosquitoes. PCR-amplified DNA probes for fluorescence in situ hybridization (FISH) were designed based on the genome of An. atroparvus. The DNA probe obtained by microdissection procedures from the breakpoint region was labelled in a DOP-PCR reaction. Population analysis was performed on 371 specimens collected in 18 locations. Results We report the development of a high-quality standard photomap for the polytene chromosomes from ovarian nurse cells of An. beklemishevi. To confirm the suitability of the map for physical mapping, several PCR-amplified probes were mapped to the chromosomes of An. beklemishevi using FISH. In addition, we identified and mapped DNA probes to flanking regions of the breakpoints of two inversions on chromosome X of this species. Inversion polymorphism was determined in 13 geographically distant populations of An. beklemishevi. Four polymorphic inversions were detected. The positions of common chromosomal inversions were indicated on the map. Conclusions The study constructed a standard photomap for ovarian nurse cell chromosomes of An. beklemishevi and tested its suitability for physical genome mapping and population studies. Cytogenetic analysis determined inversion polymorphism in natural populations of An. beklemishevi related to this species’ adaptatio

    Mitotic-chromosome-based physical mapping of the Culex quinquefasciatus genome

    Get PDF
    The genome assembly of southern house mosquito Cx. quinquefasciatus is represented by a high number of supercontigs with no order or orientation on the chromosomes. Although cytogenetic maps for the polytene chromosomes of this mosquito have been developed, their utilization for the genome mapping remains difficult because of the low number of high-quality spreads in chromosome preparations. Therefore, a simple and robust mitotic-chromosome-based approach for the genome mapping of Cx. quinquefasciatus still needs to be developed. In this study, we performed physical mapping of 37 genomic supercontigs using fluorescent in situ hybridization on mitotic chromosomes from imaginal discs of 4th instar larvae. The genetic linkage map nomenclature was adopted for the chromosome numbering based on the direct positioning of 58 markers that were previously genetically mapped. The smallest, largest, and intermediate chromosomes were numbered as 1, 2, and 3, respectively. For idiogram development, we analyzed and described in detail the morphology and proportions of the mitotic chromosomes. Chromosomes were subdivided into 19 divisions and 72 bands of four different intensities. These idiograms were used for mapping the genomic supercontigs/genetic markers. We also determined the presence of length polymorphism in the q arm of sex-determining chromosome 1 in Cx. quinquefasciatus related to the size of ribosomal locus. Our physical mapping and previous genetic linkage mapping resulted in the chromosomal assignment of 13% of the total genome assembly to the chromosome bands. We provided the first detailed description, nomenclature, and idiograms for the mitotic chromosomes of Cx. quinquefasciatus. Further application of the approach developed in this study will help to improve the quality of the southern house mosquito genome

    Physical Mapping of the \u3ci\u3eAnopheles\u3c/i\u3e (\u3ci\u3eNyssorhynchus\u3c/i\u3e) \u3ci\u3edarlingi\u3c/i\u3e Genomic Scaffolds

    Get PDF
    The genome assembly of Anopheles darlingi consists of 2221 scaffolds (N50 = 115,072 bp) and has a size spanning 136.94 Mbp. This assembly represents one of the smallest genomes among Anopheles species. Anopheles darlingi genomic DNA fragments of ~37 Kb were cloned, end-sequenced, and used as probes for fluorescence in situ hybridization (FISH) with salivary gland polytene chromosomes. In total, we mapped nine DNA probes to scaffolds and autosomal arms. Comparative analysis of the An. darlingi scaffolds with homologous sequences of the Anopheles albimanus and Anopheles gambiae genomes identified chromosomal rearrangements among these species. Our results confirmed that physical mapping is a useful tool for anchoring genome assemblies to mosquito chromosomes

    Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes

    Get PDF
    Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes

    Breakpoint structure of the Anopheles gambiae 2Rb chromosomal inversion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative arrangements of chromosome 2 inversions in <it>Anopheles gambiae </it>are important sources of population structure, and are associated with adaptation to environmental heterogeneity. The forces responsible for their origin and maintenance are incompletely understood. Molecular characterization of inversion breakpoints provides insight into how they arose, and provides the basis for development of molecular karyotyping methods useful in future studies.</p> <p>Methods</p> <p>Sequence comparison of regions near the cytological breakpoints of 2Rb allowed the molecular delineation of breakpoint boundaries. Comparisons were made between the standard 2R<it>+</it><sup><it>b </it></sup>arrangement in the <it>An. gambiae </it>PEST reference genome and the inverted 2R<it>b </it>arrangements in the <it>An. gambiae </it>M and S genome assemblies. Sequence differences between alternative 2R<it>b </it>arrangements were exploited in the design of a PCR diagnostic assay, which was evaluated against the known chromosomal banding pattern of laboratory colonies and field-collected samples from Mali and Cameroon.</p> <p>Results</p> <p>The breakpoints of the 7.55 Mb 2R<it>b </it>inversion are flanked by extensive runs of the same short (72 bp) tandemly organized sequence, which was likely responsible for chromosomal breakage and rearrangement. Application of the molecular diagnostic assay suggested that 2R<it>b </it>has a single common origin in <it>An. gambiae </it>and its sibling species, <it>Anopheles arabiensis</it>, and also that the standard arrangement (2R<it>+</it><sup><it>b</it></sup>) may have arisen twice through breakpoint reuse. The molecular diagnostic was reliable when applied to laboratory colonies, but its accuracy was lower in natural populations.</p> <p>Conclusions</p> <p>The complex repetitive sequence flanking the 2R<it>b </it>breakpoint region may be prone to structural and sequence-level instability. The 2R<it>b </it>molecular diagnostic has immediate application in studies based on laboratory colonies, but its usefulness in natural populations awaits development of complementary molecular tools.</p

    Phylogenomics revealed migration routes and adaptive radiation timing of holarctic malaria mosquito species of the Maculipennis group

    Get PDF
    BackgroundPhylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics.ResultsTo reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group.ConclusionsOur phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia
    corecore