81 research outputs found

    HtrA Protease from Bacillus subtilis Suppresses the Bacterial Fouling of the Rat Skin Injuries

    Get PDF
    © 2016, Springer Science+Business Media New York.The gene of serine protease HtrA from Bacillus subtilis was cloned and recombinant protein was overexpressed in E. coli and purified. The recombinant HtrA efficiently suppressed in vitro the biofilm formation by clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis. While the model rat skin injuries treated with HtrA healed slower than in the case of chymotrypsin, their recovery was significantly faster compared with pure buffer. On the other hand, the number of bacterial CFUs on the injuries treated with HtrA solution was reduced five times in 8 days, similarly to chymotrypsin-treated ones, while only twofold reduction was observed in controls. By the way, the resident microflora content of protease-treated and control wounds remained almost similar within 4 days, with Enterococcus faecalis and S. epidermidis being the main resident microflora after the treatment. To the eighth day, the amount of staphylococcal cells was drastically reduced on HtrA- and chymotrypsin-treated wound surfaces, confirming that both proteases provide wound cleaning from pathogenic microflora. Thus, HtrA from B. subtilis significantly reduces the microbial fouling of the wound surface being thereby of interest for wound care

    The first TIPS surgery performed in the Udmurt Republic in a young patient with secondary biliary cirrhosis

    Get PDF
    Treatment of patients with iatrogenic injuries of the biliary tract is the most difficult and important section in hepatobiliary surgery. When analyzing the causes, it was found that in 70–94 % of cases this type of injury is observed during cholecystectomy. We present a rare clinical case of the development of secondary biliary cirrhosis due to iatrogenic trauma of the biliary tract. This injury caused long-term suffering for the patient due to the further development of complications of cirrhosis, specifically of portal hypertension. The latter caused repeated recurrent profuse bleeding from varicose veins of the esophagus. The use of a minimally invasive transjugular intrahepatic portosystemic shunt procedure for the first time in the Udmurt Republic was of particular relevance in solving this problem. This procedure has become a key one in solving the abovementioned problems and will become the preventive measure for the cirrhosis progression in the future. It is also important to focus on prophylactic measures aimed at preventing iatrogenic injuries of the biliary tract, as this problem can cause irreversible complications. Prevention should include adequate examination and visualization of the bile ducts and gallbladder before surgery, their careful mobilization, compliance with the rules of operation with electrosurgical instruments, as well as the use of additional minimally invasive techniques such as choledoscopy, cholangiography and intraoperative ultrasound. Besides that, all manipulations should be carried out under strict control and clear visualization of instruments and anatomical structures of organs. The article provides a detailed description of the technique of transjugular intrahepatic portosystemic shunt surgery, as well as presents X-ray images obtained during this operation

    Evolution of intermetallic GaPd2_{2}/SiO2_{2} catalyst and optimization for methanol synthesis at ambient pressure

    Get PDF
    The CO2_{2} hydrogenation to methanol is efficiently catalyzed at ambient pressure by nanodispersed intermetallic GaPd2_{2}/SiO2_{2} catalysts prepared by incipient wetness impregnation. Here we optimize the catalyst in terms of metal content and reduction temperature in relation to its catalytic activity. We find that the intrinsic activity is higher for the GaPd2_{2}/SiO2_{2} catalyst with a metal loading of 13 wt.% compared to catalysts with 23 wt.% and 7 wt.%, indicating that there is an optimum particle size for the reaction of around 8 nm. The highest catalytic activity is measured on catalysts reduced at 550°C. To unravel the formation of the active phase, we studied calcined GaPd2_{2}/SiO2_{2} catalysts with 23 wt.% and 13 wt.% using a combination of in situ techniques: X-ray diffraction (XRD), X-ray absorption near edge fine structure (XANES) and extended X-ray absorption fine structure (EXAFS). We find that the catalyst with higher metal content reduces to metallic Pd in a mixture of H2_{2}/Ar at room temperature, while the catalyst with lower metal content retains a mixture of PdO and Pd up to 140°C. Both catalysts form the GaPd2_{2} phase above 300°C, albeit the fraction of crystalline intermediate Pd nanoparticles of the catalyst with higher metal loading reduces at higher temperature. In the final state, the catalyst with higher metal loading contains a fraction of unalloyed metallic Pd, while the catalyst with lower metal loading is phase pure. We discuss the alloying mechanism leading to the catalyst active phase formation selecting three temperatures: 25°C, 320°C and 550°C

    Thio derivatives of 2(5H)-furanone as inhibitors against Bacillus subtilis biofilms

    Get PDF
    © 2015 Park-media, Ltd. Gram-positive bacteria cause a wide spectrum of infectious diseases, including nosocomial infections. While in the biofilm, bacteria exhibit increased resistance to antibiotics and the human immune system, causing difficulties in treatment. Thus, the development of biofilm formation inhibitors is a great challenge in pharmacology. The gram-positive bacterium Bacillus subtilis is widely used as a model organism for studying biofilm formation. Here, we report on the effect of new synthesized 2(5H)-furanones on the biofilm formation by B.subtilis cells. Among 57 compounds tested, sulfur-containing derivatives of 2(5H)-furanone (F12, F15, and F94) repressed biofilm formation at a concentration of 10 μg/ml. Derivatives F12 and F94 were found to inhibit the biosynthesis of GFP from the promoter of the eps operon encoding genes of the biofilm exopolysaccharide synthesis (EPS). Using the differential fluorescence staining of alive/dead cells, we demonstrated an increased bacterial sensitivity to antibiotics (kanamycin and chloramphenicol) in the presence of F12, F15, and F94, with F12 being the most efficient one. The derivative F15 was capable of disrupting an already formed biofilm and thereby increasing the efficiency of antibiotics

    Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones

    Get PDF
    © 2015 Japan Antibiotics Research Association All rights reserved. Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone) - F8 and F12 - were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds

    Профилактика послеоперационных осложнений после робот-ассистированной трансабдоминальной преперитонеальной пластики: клинический случай

    Get PDF
    Introduction. Inguinal hernia repair is one of the most common elective surgeries today. In our clinic, the majority of inguinal hernia repairs are performed laparoscopically. The most frequent complication after transabdominal preperitoneal inguinal hernia repair is postoperative seroma.Materials and methods. A 35-year-old patient C. with a right-sided inguinal hernia sought medical care in our clinic. He underwent robot-assisted TAPP with fluorescence lymphography using indocyanine green (ICG).Results and discussion. The present paper describes the possible relationship between intraoperative damage of the lymphatic vessels within the spermatic cord induced by robot-assisted transabdominal preperitoneal inguinal hernia repair and postoperative development of inguinal seroma. 5 mg/ml of indocyanine green was injected into the testicle on the side with the hernial bulge to visualize the lymphatic vessels. In this case such procedure is safe and feasible. Due to the tight fusion of the hernia sac with two visualized lymphatic vessels, they were excised during surgery. In the early postoperative period, an ultrasound scan revealed a subclinical seroma in the inguinal region of approximately 10 ml.Conclusion. A case series of ICG fluorescence lymphography during robot-assisted TAPP should be performed further to elucidate the relationship between lymphatic vessel damage and hydrocele.Введение. Одной из наиболее часто выполняемых плановых операций на сегодня является паховое грыжесечение. В нашей клинике бóльшая часть паховых грыжесечений выполняется лапароскопическим методом. Наиболее частым осложнением после трансабдоминальной преперитонеальной пластики паховых грыж является возникновение послеоперационных сером.Материалы и методы. В наше отделение обратился пациент С. 35 лет с правосторонней паховой грыжей. Ему была выполнена робот-ассистированная ТАРР с флуоресцентной лимфографией с применением индоцианина зеленого (ICG).Результаты и обсуждение. В статье описывается возможная связь между интраоперационной травмой лимфатических сосудов в составе семенного канатика во время выполнения робот-ассистированной трансабдоминальной преперитонеальной пластики паховой грыжи и развитием сером паховой области в послеоперационном периоде. С целью визуализациии лимфатических сосудов был использован препарат индоцианин зеленый 5 мг/мл, который был введен в яичко на стороне грыжевого выпячивания. Данная процедура безопасна и выполнима в данном случае. В связи с плотным сращением грыжевого мешка и двух визуализированных лимфатических сосудов в ходе операции последние были иссечены. В раннем послеоперационном периоде с помощью ультразвукового исследования выявлена субклиническая серома в паховой области объемом около 10 мл.Заключение. В качестве следующего шага для выяснения связи между повреждением лимфатических сосудов и водянкой яичка следует провести серию случаев флуоресцентной лимфографии ICG во время робот-ассистированной ТАРР

    Antimicrobial effects of sulfonyl derivative of 2(5H)-furanone against planktonic and biofilm associated methicillin-resistant and -susceptible Staphylococcus aureus

    Get PDF
    © 2017 Sharafutdinov, Trizna, Baidamshina, Ryzhikova, Sibgatullina, Khabibrakhmanova, Latypova, Kurbangalieva,Rozhina, Klinger-Strobel, Fakhrullin, Pletz, Bo gachev, Kayumov and Makarewicz. The gram-positive opportunistic bacterium Staphylococcus aureus is one of the most common causatives of a variety of diseases including skin and skin structure infection or nosocomial catheter-associated infections. The biofilm formation that is an important virulence factor of this microorganism renders the antibiotic therapy ineffective, because biofilm-embedded bacteria exhibit strongly increased tolerance to antimicrobials. Here, we describe a novel 3-chloro-5(S)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-4-[4-methylphenylsulfonyl] -2(5H)-furanone (F105), possessing a sulfonyl group and l-menthol moiety. Minimal inhibitory and bactericidal concentration values (MIC and MBC) of F105 were 10 and 40 mg/L, respectively, suggesting F105 biocidal properties. F105 exhibits pronounced activity against biofilm-embedded S. aureus and increases the efficacy of aminoglycosides (amikacin, gentamicin, and kanamycin) and benzalkonium chloride with fractional inhibitory concentration index values of 0.33-0.44 and 0.29, respectively, suggesting an alternative external treatment option, e.g., for wound infections. Moreover, low concentrations (0.5-1.3 mg/L) of F105 reduced the MICs of these antimicrobials twofold. By using confocal laser scanning microscopy and CFU counting, we show explicitly that F105 also restores the antimicrobial activity of gentamicin and ampicillin against S. aureus biofilms by several orders of magnitude. Biofilm structures were not destroyed but sterilized, with embedded cells being almost completely killed at twofold MBC. While F105 is quite toxic (CC 50 /MBC ratio 0.2), our data suggest that the F105 chemotype might be a promising starting point for the development of complex topical agents for combined anti-staphylococcal biofilm-therapies restoring the efficacy of some antibiotics against difficult to treat S. aureus biofilm

    Radionuclide Diagnosis of Esophageal Dysmotility and Gastroesophageal Reflux in Patients with Systemic Sclerosis

    Get PDF
    Objective: to evaluate the possibilities of dynamic scintigraphy for the diagnosis of esophageal dysmotility (ED) and gastroesophageal reflux (GER) in patients with systemic sclerosis (SS).Material and methods. The study group included 77 patients with established SS of different disease duration (from several months to 30 years) who underwent Technephyt 99mTc dynamic esophageal scintigraphy using two-stage protocol. During the first stage, the esophageal transport function was evaluated; during the second stage, the presence and severity of GER were assessed. Scans were analyzed using visual assessment, quantitative estimation of time/activity curves, and a proposed three-point scale for evaluating ED and GER severity. The control group consisted of 19 practically healthy individuals who underwent a routine examination to exclude digestive system and gastrointestinal tract diseases, the algorithm of which included dynamic scintigraphy.Results. ED was found in 74 of 77 patients (96%). According to three-point scale, severe ED (3 points) was registrated in 41 (55%) patients, moderate ED (2 points) in 15 (21%), and mild ED in 18 (24%). GER was diagnosed in 35 of 77 cases (45%): mild GER in 13 (37%), moderate GER (2 points) in 22 (63%), and none of the patients was found to have severe GER (3 points). A significant relationship between the presence of GER and the severity of ED was not obtained, but a direct correlation was established between ED and GER severity.Conclusion. Most SS patients demonstrated ED of varying severity associated with mild and moderate GER in nearly 45% of the cases. The study results confirm the practical significance of dynamic scintigraphy for assessing the esophageal transport function and GER in SS patients

    Light-Promoted Hydrogenation of Carbon Dioxide¿An Overview

    Full text link
    [EN] Hydrogenation of carbon dioxide is considered as a viable strategy to generate fuels while closing the carbon cycle (heavily disrupted by the abuse in the exploitation of fossil resources) and reducing greenhouse gas emissions. The process can be performed by heat-powered catalytic processes, albeit conversion and selectivity tend to be reduced at increasing temperatures owing to thermodynamic constraints. Recent investigations, as summarised in this overview, have proven that light activation is a distinct possibility for the promotion of CO2 hydrogenation to fuels. This effect is particularly beneficial in methanation processes, which can be enhanced under simulated solar irradiation using materials based on metallic nanoparticles as catalysts. The use of nickel, ruthenium and rhodium has led to substantial efficiencies. Light-promoted processes entail performances on a par with (or even superior to) those of thermally-induced, industrially-relevant, commercial technologies.The author thanks the Spanish Government (Ministerio de Economía y Competitividad, MINECO) for financial support via a project for young researchers (CTQ2015-74138-JIN), and the ‘‘Severo Ochoa’’ programme (SEV 2012-0267). The European Union is also acknowledged for the SynCatMatch project (ERCAdG-2014-671093)Puga Vaca, A. (2016). Light-Promoted Hydrogenation of Carbon Dioxide¿An Overview. Topics in Catalysis. 59(15-16):1268-1278. https://doi.org/10.1007/s11244-016-0658-zS126812785915-16Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567de Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106Schach M-O, Schneider R, Schramm H, Repke J-U (2010) Techno-economic analysis of postcombustion processes for the capture of carbon dioxide from power plant flue gas. Ind Eng Chem Res 49:2363–2370Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217–9233Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758Ozin GA (2015) You can’t have an energy revolution without transforming advances in materials, chemistry and catalysis into policy change and action. Energy Environ Sci 8:1682–1684Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci 2:315–321Li Y, Lu G, Ma J (2014) Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structure for CO2 methanation. RSC Adv 4:17420–17428Garbarino G, Bellotti D, Riani P, Magistri L, Busca G (2015) Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: catalysts activation, behaviour and stability. Int J Hydrogen Energy 40:9171–9182Carenco S, Wu C-H, Shavorskiy A, Alayoglu S, Somorjai GA, Bluhm H, Salmeron M (2015) Synthesis and structural evolution of nickel-cobalt nanoparticles under H2 and CO2. Small 11:3045–3053Sharafutdinov I, Elkjaer CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt J-D, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjaer CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320–324Garbarino G, Riani P, Magistri L, Busca G (2014) A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. Int J Hydrogen Energy 39:11557–11565Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Size-controlled model CO nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Grunwaldt J-D, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5:5827–5836Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 9:841–842Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study of interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467:191–194Tsuneoka H, Teramura K, Shishido T, Tanaka T (2010) Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. J Phys Chem C 114:8892–8898Teramura K, S-i Okuoka, Tsuneoka H, Shishido T, Tanaka T (2010) Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl Catal B 96:565–568Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A 126:117–123Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774Hoch LB, Wood TE, O’Brien PG, Liao K, Reyes LM, Mims CA, Ozin GA (2014) The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci 1:1400013Li M, Li P, Chang K, Wang T, Liu L, Kang Q, Ouyang S, Ye J (2015) Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem Commun 51:7645–7648Tahir M, Amin NS (2015) Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl Catal A 493:90–102Tahir M, Amin NS (2016) Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chem Eng J 285:635–649Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279:123–135Ahmed N, Morikawa M, Izumi Y (2012) Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts. Catal Today 185:263–269Yang C-C, Vernimmen J, Meynen V, Cool P, Mul G (2011) Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. J Catal 284:1–8Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon-dioxide at room-temperature and atmospheric pressure. Nature 327:506–508O’Brien PG, Sandhel A, Wood TE, Jelle AA, Hoch LB, Perovic DD, Mims CA, Ozin GA (2014) Photomethanation of gaseous CO2 over RU/silicon nanowire catalysts with visible and near-infrared photons. Adv Sci 1:1400001Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J (2014) Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem Int Ed 53:11478–11482Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal Methods 5:1086–1097Yang C-C, Yu Y-H, van der Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction. J Am Chem Soc 132:8398–8406Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J Chem Soc Faraday Trans 94:1875–1880Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710Morikawa M, Ahmed N, Yoshida Y, Izumi Y (2014) Photoconversion of carbon dioxide in zinc-copper-gallium layered double hydroxides: the kinetics to hydrogen carbonate and further to CO/methanol. Appl Catal B 144:561–569Sabatier P (1910) Making methane or mixtures of methane and hydrogen, US Pat. 956734Melsheimer J, Guo W, Ziegler D, Wesemann M, Schlögl R (1991) Methanation of carbon dioxide over Ru/Titania at room temperature: explorations for a photoassisted catalytic reaction. Catal Lett 11:157–168Lin X, Yang K, Si R, Chen X, Dai W, Fu X (2014) Photoassisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Appl Catal B 147:585–591Lin X, Lin L, Huang K, Chen X, Dai W, Fu X (2015) CO methanation promoted by UV irradiation over Ni/TiO2. Appl Catal B 168–169:416–422Sastre F, Oteri M, Corma A, García H (2013) Photocatalytic water gas shift using visible or simulated solar light for the efficient, room-temperature hydrogen generation. Energy Environ Sci 6:2211–2215Sastre F, Corma A, García H (2013) Visible-light photocatalytic conversion of carbon monoxide to methane by nickel(ii) oxide. Angew Chem Int Ed 52:12983–12987Zhao Y, Zhao B, Liu J, Chen G, Gao R, Yao S, Li M, Zhang Q, Gu L, Xie J, Wen X, Wu L-Z, Tung C-H, Ma D, Zhang T (2016) Oxide-modified nickel photocatalyst for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. 55:4215–4219Albero J, Garcia H, Corma A (2016) Temperature dependence of solar light assisted CO2 reduction on Ni based photocatalyst. Top Catal 59:787–79
    corecore