178 research outputs found

    Shift of the surface-barrier part of the irreversibility line due to columnar defects in Bi_2Sr_2CaCu_2O_8 thin films

    Full text link
    We report the results of studying the influence of the uranium-ion irradiation of the Bi_2Sr_2CaCu_2O_8 thin films on the high-temperature part (close to critical temperature) of their irreversibility line. We studied irreversible properties of the films by measuring the hysteresis of nonresonant microwave absorption. The results have revealed the shift of irreversibility line towards low temperatures and magnetic fields. The effect is most significant for the films irradiated with large doses, more than 1T. This fact is in good agreement with the theoretical prediction by Koshelev and Vinokur of suppression of surface barrier by columnar defects.Comment: LaTeX2e, 9 pages with 3 figures, to be published in Physica

    Longitudinal Emittance Blow-Up in the LHC

    Get PDF
    The LHC relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blow-up provides the required emittance growth. The method was implemented through the summer of 2010. We inject band-limited RF phase-noise in the main accelerating cavities during the whole ramp of about 11 minutes. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2 ns (4 ) at flat top with low bunch-to-bunch scatter and provides a stable beam for physics coast

    Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    Get PDF
    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available data to provide explanations for the phenomena: possible remedies are also discussed

    Space charge and electron clouds issues

    Get PDF
    We present here the relevant space charge issues for long-term beam storage. The impact on the choice of the working point along with the prediction of the beam loss is discussed for the example of the SIS100. We present a first estimate on the effect of self consistency and discuss the equivalence of space charge, and electron clouds induced ”quasi” incoherent effect

    Progress with the Upgrade of the SPS for the HL-LHC Era

    Full text link
    The demanding beam performance requirements of the High Luminosity (HL-) LHC project translate into a set of requirements and upgrade paths for the LHC injector complex. In this paper the performance requirements for the SPS and the known limitations are reviewed in the light of the 2012 operational experience. The various SPS upgrades in progress and still under consideration are described, in addition to the machine studies and simulations performed in 2012. The expected machine performance reach is estimated on the basis of the present knowledge, and the remaining decisions that still need to be made concerning upgrade options are detailed.Comment: 3 p. Presented at 4th International Particle Accelerator Conference (IPAC 2013

    Experimental Studies of Carbon Coatings as Possible Means of Suppressing Beam Induced Electron Multipacting in the CERN SPS

    Get PDF
    Electron cloud build-up is a major limitation for the operation of the SPS with LHC beam above nominal intensity. These beams are envisaged in the frame of the LHC luminosity upgrade and will be available from the new injectors LPSPL and PS2. A series of studies have been conducted in order to identify possible means to suppress electron multipacting by coating the existing SPS vacuum chambers with thin films of amorphous carbon. After a description of the experimental apparatus installed in the SPS, the results of the tests performed with beam in 2008 will be presented

    Homogenization of Variational Inequalities for the p-Laplace Operator in Perforated Media Along Manifolds

    Get PDF
    We address homogenization problems of variational inequalities for the p-Laplace operator in a domain of Rn (n ? 3, p ? [2, n)) periodically perforated by balls of radius O(??) where ? > 1 and ? is the size of the period. The perforations are distributed along a (n ? 1)-dimensional manifold ? , and we impose constraints for solutions and their fluxes (associated with the p-Laplacian) on the boundary of the perforations. These constraints imply that the solution is positive and that the flux is bounded from above by a negative, nonlinear monotonic function of the solution multiplied by a parameter ? ?? , ? ? R and ? is a small parameter that we shall make to go to zero. We analyze different relations between the parameters p, n, ?, ? and ?, and obtain homogenized problems which are completely new in the literature even for the case p = 2.This work has been partially supported by the Spanish grant MINECO:MTM2013-44883-P

    CERN SPS Impedance in 2007

    Get PDF
    Each year several measurements of the beam coupling impedance are performed in both longitudinal and transverse planes of the CERN Super Proton Synchrotron to keep track of its evolution. In parallel, after the extensive and successful campaign of identification, classification and cure of the possible sources of (mainly longitudinal) impedance between 1998 and 2001, a new campaign (essentially for the transverse impedance this time) has started few years ago, in view of the operation of the SPS with higher intensity for the LHC luminosity upgrade. The present paper summarizes the results obtained from the measurements performed over the last few years and compares them to our predictions. In particular, it reveals that the longitudinal impedance is reasonably well understood and the main contributors have already been identified. However, the situation is quite different in the transverse plane: albeit the relative evolution of the transverse impedance over the last few years can be well explained by the introduction of the nine MKE kickers necessary for beam extraction towards the LHC, significant contributors to the SPS transverse impedance have not been identified yet

    Energy loss of proton and lead beams in the CERN-SPS

    Get PDF
    The energy loss of an unbunched beam circulating in the CERN-SPS has been obtained from the observed frequency change of a longitudinal Schottky signal. This experiment was carried out for protons at 14, 120 and 270 GeV/c and for lead ions PB82208 at Z .270 GeV/c momentum. The dominant effects which determine the energy loss are synchrotron radiation, ionization of the residual gas and parasitic mode loss in the resistive longitudinal impedance. Since all the protons in a lead nucleus radiate coherently the synchrotron radiation is proportional to Z2 like the other effects. The experimental results are analyzed and the contributions of the individual effects determined. Using an impedance of | Z/n | ~ 12 W gives the best fit through the experimental data

    SPS Impedance

    Get PDF
    For many years several measurements of the beam coupling impedance have been performed each year in both longitudinal and transverse planes of the CERN Super Proton Synchrotron to keep track of the evolution of its hardware. Copious types of equipments had to be modified or added in the past to allow the SPS to produce the nominal LHC beam. The next challenge would be the operation of the SPS with higher intensity for the LHC luminosity upgrade, which requires a good knowledge of the machine impedance and in particular of its major contributors. The current understanding of the measurements performed over the last few years is presented in this paper. In particular, this analysis reveals that the longitudinal impedance is reasonably well understood, while the situation is less satisfactory in the transverse planes, where about half of the measured impedance still needs to be identified
    • …
    corecore